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Matters arising

Evidence from a statewide vaccination RCT 
shows the limits of nudges
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Simple messages derived from behavioural science have increased 
the uptake of the seasonal flu vaccine1–5, and early studies from the 
coronavirus disease 2019 (COVID-19) vaccine rollout have found that 
this strategy works for recently eligible older adults6 and healthcare 
workers7. However, it is unknown whether messaging on its own will 
encourage vaccination against COVID-19 among reluctant populations. 
In a randomized controlled trial (RCT) five to eight weeks after all adults 
in the study population (n = 142,428) were eligible for vaccination, we 
find that the best-performing nudge in previous studies2,6 and seven 
additional messages—stressing vaccines’ safety, efficacy, minimiza-
tion of bad outcomes, accessibility (free, no identification required), 
protection of recipients’ families or widespread adoption—had no 
detectable effect among people who had not been vaccinated accord-
ing to state records. This suggests an important boundary condition 
for nudges that is consistent with a recent result from late in the flu 
season8. Public health authorities should consider simple messages to 
encourage vaccination at key inflection points (for example, rollout of 
paediatric COVID-19 vaccines and full Food and Drug Administration 
approval for adults), but may see diminishing returns if using them to 
encourage the more hesitant.

After a strong initial push, the rate of COVID-19 vaccinations declined 
in the USA. Efforts to encourage vaccination have run the gamut from 
free doughnuts and marijuana to million-dollar lotteries and rare expe-
riences such as driving at a superspeedway. Recently, Dai et al.6 reported 
promising results from an RCT evaluating another tactic—sending 
people short messages informed by behavioural science. The appeal 
of this approach is clear: it is cheap and minimally invasive. It is also 
well supported by convergent evidence: email messages increased 
COVID-19 vaccination appointment sign-ups among healthcare work-
ers7, and SMS1–3, mail4 and email5 messages have increased seasonal flu 
vaccinations. Moreover, it has garnered considerable media attention9, 
with pieces advocating it in The Washington Post, Fortune, The Guard-
ian, U.S. News & World Report and this journal10. Policymakers also took 
note, as several states implemented SMS campaigns9.

The Dai et al. study was conducted early in the COVID-19 vaccine 
rollout with recently eligible older adults. Although the results show the 
potential of nudges, it is unknown whether short messages can change 
motivations in the population that did not get vaccinated immediately. 
Indeed, Dai et. al. distinguish burden reduction (helping people to fol-
low through on pre-existing intentions) from demand creation (chang-
ing intentions), and numerous reviews find limited and mixed evidence 
on what drives demand11–14.

To test whether these findings generalize beyond the initial stages of 
COVID-19 vaccination, we evaluated the efficacy of text messages sent 
by the Rhode Island Department of Health (RIDOH) to increase uptake 

in May and June 2021. The messages included the best-performing ‘own-
ership’ language from Dai et al. and a related flu study2. This language 
was supplemented in most conditions with information about safety, 
efficacy or access, for example. This study offers a strong test of direct 
messaging because recipients were unvaccinated five to eight weeks 
after becoming eligible. It is also a realistic test of what a government 
can and, more importantly, cannot do (for example, craft messages 
containing false claims and send excessive communications).

RIDOH maintains separate databases of individuals who have been 
vaccinated and tested for COVID-19. Our study population is the differ-
ence of these lists (tested but not yet vaccinated) matched through a 
series of quasi-identifiers and excluding people under 18 when tested 
(final n = 142,428; see Extended Data Fig. 1 for randomization scheme). 
The primary outcome was vaccination by the end of the measurement 
period: 25 May 2021 to 21 June 2021 (one week after the last day of mes-
saging). At time of launch, all Rhode Islanders over 16 had been eligible 
to get vaccinated since 19 April 2021, and free, walk-in availability was 
widespread. The study was deemed exempt by RIDOH’s institutional 
review board. The sample size was dictated by policy goals, as all eligible 
individuals received messages. A previous study2 with more conditions 
and a sample size similar to our first iteration detected meaningful 
effects.

We created eight messages (Extended Data Table 1, Supplementary 
Information section 1) on the basis of behavioural science research 
on COVID-19 health behaviours and other vaccination contexts. 
All included ownership language (‘a vaccine is waiting for you’)2,6, 
a sentiment also appearing in a standalone condition. Other con-
ditions further emphasized safety, access, minimal likelihood of 
bad outcomes, reduced risk to one’s family, social norms or some 
combination. All included a link to a state-run page providing  
vaccination options.

Individuals were assigned to receive one of eight messages or no 
message (control group). We randomly divided the population into 
three consecutive iterations of 40,000, 39,709 or 78,394, and then 
into roughly equal groups per day within those weeks. Within these 
strata, individuals were assigned to receive one of eight messages or 
no message (control group).

To maximize overall vaccinations, in iterations 2 and 3 we used an 
adaptive design such that the likelihood of assignment to any given 
message was determined by message performance in the previous 
iteration, with an 𝜀-bounded Thompson sampler adjusting the prob-
ability of assignment to condition over time (Supplementary Informa-
tion section 2).

This study is a block-randomized experiment. All analyses (pre- 
registration: https://osf.io/pkhae) use either the Cochran–Mantel– 
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Haenszel (CMH) test for 9 (condition) × 2 (outcome) × 13 (day) 
strata tables or a block-specific weighting, which provides unbiased  
estimates of intent-to-treat effects and randomization-justified  
variance calculations.

No SMS message did substantially better or worse than the control 
whether vaccination rates were measured one week after the mes-
sages were sent or at the end of the study period. Figure 1 illustrates 
the small size of these differences: the largest positive difference 
was 0.002 for the ‘preventing bad outcomes’ condition (that is, 2% 
of control and 2.2% of ‘preventing bad outcomes’ were vaccinated). 
Furthermore, we see no evidence of differences in vaccination rates 
(however measured) between the control and an aggregated ‘any 
message’ condition (estimated difference in proportions vacci-
nated −0.001, 95% confidence interval (CI) −0.004 to 0.001, CMH 
test, P = 0.27), nor between the arms taken all together (CMH test 
for 9 × 2 × 13 table, P = 0.12). For demographics, see Extended Data 
Table 2; for additional analyses see Supplementary Information 
sections 3–6.

We find no evidence that a strategy found effective early in the 
vaccine rollout6,7 increased COVID-19 vaccination among people 
who remained unvaccinated five or more weeks after becoming 
eligible. Public health officials—especially those avoiding or legally 
barred from mandates—may turn to this strategy to increase vac-
cination rates among the less enthusiastic but will probably see 
minimal impact. Dai et al. highlighted a promising, valuable and 
low-cost tool that can help to increase vaccinations; although our 
result does not contradict theirs, it does bound the reach of such 
approaches, a possibility one of their co-authors contemplated 
elsewhere10.

One limitation of our study is that the initial recipient list may contain 
some vaccinated people. Rhode Island residents could get tested at 
home but vaccinated out of state, and certain sites (for example, Vet-
erans Affairs hospitals) do not need to report individual-level records 
to the state. Base rates may be inaccurate because of this and other 
sources of noise (Supplementary Information section 6), although 
this would not mask treatment effects, as message assignment was 
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Fig. 1 | Average treatment effects for the eight experimental conditions 
overall and proportions vaccinated by day. Top left, the differences in the 
proportion vaccinated by the end of the study between each message 
condition and the control or ‘no message’ condition (2% of the control 
condition was vaccinated within the study period). Top right, the differences in 
the proportion vaccinated within a week of message sending (1% of the control 
condition was vaccinated within a week of message sending). The total control 

condition participation was 11,327. The total size of each arm is shown on the 
right. All point estimates with 95% confidence intervals (CIs). No adjustment 
was made for multiple testing as no test cast doubt on the null of no difference. 
Bottom, proportions vaccinated by 22 June 2021 in each message by the date 
messages were sent. The grey vertical line shows the proportion vaccinated in 
the control condition. The 95% confidence intervals for small proportions 
come from the binomial ensemble method of ref. 17.
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random. Another limitation is that race and ethnicity information is 
incomplete (Extended Data Table 2).

The study by Dai et al. differed from ours in several ways, including 
population age (mean age 70 versus 39), message source (recipients’ 
health network versus a state agency), sign-up ease (recipients being 
directed to a sign-up system versus a page providing vaccination 
options) and vaccination context (appointments were scarce in 
February 2021 but abundant by May 2021). Although these factors 
could account for the different outcomes, flu vaccine findings sug-
gest otherwise: similar interventions have shown success among 
younger populations1, when issued by the state15, and using incon-
venient media (mailed letters4), and flu vaccines are comparatively 
easy to procure. One feature that Dai et al. and many flu vaccine stud-
ies do share is that they were conducted early in their respective 
campaigns, whereas ours was not. Notably, a study of older adults 
found increased uptake of flu vaccines due to postcard messages in 
October but not November, December or January8. Taken together, 
this suggests that nudges help early in vaccination campaigns, but 
the efficacy decays. Another COVID-19 study recently made public 
provides further support16.

Although we cannot identify the mechanism(s) responsible for decay-
ing efficacy of nudges, the possibilities include novelty effects early on, 
oversaturation effects later on, different types of hesitancy (logistical 
barriers versus objections to vaccines), and, especially for COVID-19, 
increasingly polarized discourse, divergent social norms and differential 
vaccine knowledge. Future work in public health communication should 
distinguish these mechanisms to better implement message campaigns. 
It may also be that short messages effectively encourage those some-
what inclined to vaccinate but cannot move those less inclined, regard-
less of timing, and with time, the former group shrinks. Despite our null 
result, nudges may serve foreseeable public health needs (for example, 
vaccinating children under 5 or promoting boosters) if timed correctly. 
Indeed, we know of no studies showing reduced vaccinations owing to 
message campaigns, so they carry little potential harm. However, their 
ability to move the more reluctant may be limited.

Reporting summary
Further information on experimental design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data analysed in this paper were provided by the Rhode Island 
Department of Health and contains protected health information.  
To protect privacy, we cannot publicly post individual-level data. 
Qualified researchers with a valuable research question and rel-
evant approvals including ethical approval can request access to the 
de-identified data about this trial from the corresponding author.  
A formal contract will be signed and an independent data protection 
agency should oversee the sharing process to ensure the safety of the data. 
Lightly aggregated data that support most of the analyses in this paper can 
be found at https://github.com/thepolicylab/COVID-SMSExperiment. 
Some demographic analyses rely on publicly available data from the United 
States Census Bureau, the United States Department of Housing and Urban 
Development, the Rhode Island Geographical Information System and the 
Rhode Island Board of Elections. Copies of these data and, where appropri-
ate, the code that gathered the data are available at https://github.com/
thepolicylab/COVID-SMSExperiment.

Code availability
The code to replicate the analyses and figures in the paper and the 
Extended Data is available at https://github.com/thepolicylab/
COVID-SMSExperiment.
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Extended Data Fig. 1 | Randomization scheme and sample. RIDOH maintains 
separate databases of (a) individuals who have been vaccinated and (b) 
individuals who have been tested for COVID-19. Vaccination data comes from 
medical providers and pharmacies receiving vaccines supplied by the State of 
Rhode Island, who are required to participate in the Rhode Island Child and 
Adult Immunization Registry (RICAIR) through electronic data reporting. 
Immunization records can be accessed by an individual’s medical provider or 
by authorized RIDOH users conducting public health surveillance activities 
including linking vaccination records with the state’s COVID-19 testing or case 
databases to verify information collected during case investigation. COVID-19 
testing data (b) is reported to the state through the National Electronic Disease 
Surveillance System (NEDSS). Our study population is the difference of lists (a) 
and (b); the resulting database contained 162,504 unique entries. The study 

ended one day early after RIDOH received complaints about excessive 
communication. It is unclear how many complaints were received and how 
many were specifically about this study; other concurrent outreach efforts 
included SMS messages about COVID-19 testing and phone calls to older adults 
encouraging vaccination. Nevertheless, leadership halted all such 
communications out of concern that people would block crucial emergency 
messages. The final N for the study is 142,428. A small subset of the initial 
population (N ≈ 800) had chosen Spanish as their preferred language on testing 
sign-up forms. While we had initially planned to send this group messages 
translated into Spanish, an unresolved encoding problem prevented Spanish 
characters from displaying properly on some cell phones. The project team 
decided to reintroduce these individuals into the general study population for 
Iteration 3.
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Matters arising
Extended Data Table 1 | Messages used in the RCT and rationales

All messages were preceded by “A message from the Rhode Island Department of Health:” and concluded with “Click here for all the ways to claim your free dose: health.ri.gov/[address unique 
to the message condition].” Rationales are based on refs. 2,5,6,18–48. FK, Flesch–Kincaid readability score.



Nature  |  Vol 604  |  7 April 2022  |  E7

Extended Data Table 2 | Demographics for study population

Demographic information was entered by individuals or medical technicians at the time of COVID-19 testing and was voluntary. Thus, this information is incomplete, with missing race and 
ethnicity values for 45% of individuals and missing gender for 10%. We report the demographics that are known as a partial look at the characteristics of the group.
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Supplementary Information

SI.1. Message creation

Despite intense research interest in facilitators of and factors associated with vaccine uptake over
the last several decades, many systematic reviews find a lack of extensive evidence linking
messaging interventions to actual vaccination.1 If tried and true strategies for promoting seasonal
flu, H1N1, HPV, or childhood vaccines had emerged from the literature, we might simply adapt
them to the context of COVID-19 despite the pandemic’s unique features (e.g., its unprecedented
reach or unusual degree of politicization). Since they do not, we have conducted a two-step
review process for generating candidate messages (see Figure S1). First, we searched for
individual message test studies and judged the strength and relevance of the evidence using the
following criteria, with the second in each pair indicating better evidence than the first: (i)
measured outcome: self-reported/projected behavior (e.g., intention to get vaccinated) versus
actual behavior (measured vaccine uptake); (ii) context: seasonal flu/HPV/other vaccination
context versus COVID-19; (iii) random message assignment: no versus yes. Studies that did not
meet at least one of the preferred criteria are not included. Most studies were conducted in the
United States. Second, we considered the survey work on various demographic groups’ concerns
about COVID-19 vaccination (which are not uniform) to ensure that some messages in the set
conceivably address these concerns. This process generated eight candidate messages, described
below and listed in Table 1. The content of the messages was discussed with and approved by
RIDOH’s communications team and medical directors. Slight changes to wording were
necessary to keep readability scores at a desirable level.

Although there is a lack of extensive evidence on the efficacy of particular message
strategies, we note that a number of studies find increased intended2 and actual3 vaccine uptake
due to any message at all relative to control (no message) conditions. No studies to our

3 Esteban-Vasallo et al., 2019. Effect of mobile phone text messaging for improving the uptake of influenza
vaccination in patients with rare diseases. Lee et al., 2020. Large-scale influenza vaccination promotion on a mobile
app platform: A randomized controlled trial. Regan et al., 2017. Randomized controlled trial of text message
reminders for increasing influenza vaccination. Yokum et al., 2018. Letters designed with behavioural science
increase influenza vaccination in Medicare beneficiaries. But see OES, 2021. Low-cost interventions to increase
vaccination uptake.

2 Argote et al., 2021. Messaging interventions that increase COVID-19 vaccine willingness in Latin America.

1 “We were surprised to find that few randomized trials have successfully changed what people think and feel about
vaccines, and those few that succeeded were minimally effective in increasing uptake” (Brewer et al., 2018). “Given
the paucity of information on effective strategies to address vaccine hesitancy, when interventions are implemented,
planning a rigorous evaluation of their impact on vaccine hesitancy/vaccine acceptance will be essential” (Dubé et
al. 2015). “...given the complexity of vaccine hesitancy and the limited evidence available on how it can be
addressed, identified strategies should be carefully tailored according to the target population, their reasons for
hesitancy, and the specific context” (Jarrett et al., 2015). “More high quality research is needed to demonstrate the
effects of messaging interventions on actual vaccine uptake” (Lawes-Wickwar et al., 2021). “Overall, there is a lack
of good-quality primary studies [on risk messages], and existing interventions are suboptimal” (Parsons et al., 2018).

https://pdf.sciencedirectassets.com/271205/1-s2.0-S0264410X19X0033X/1-s2.0-S0264410X19309703/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEE0aCXVzLWVhc3QtMSJIMEYCIQDVg98TBQfnwO3eB9IGZM%2FOIUymyNBkj1m3w4OYNrfukAIhAIyJ6tu7NlzsdLDr69Hman8nZcqjeTJpagR9NiuXRam7Kr0DCNb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEQAxoMMDU5MDAzNTQ2ODY1Igxh01HIwE2Eaq04i3YqkQMlfirBWRSKBw2JvXV6URaE%2F3ZbLM3%2F8snuKANOoFcbMB2zYtc6A%2FKgU%2FHKFIN%2F5OpM2OTYRK5i6D2FUtcCHaKXcXQBYeLLABdwB5CQXDbDoLLnVofBK04RQdm9n0jgHYl9TAi4ziiWdnQnmxB1WLOB9WC9j8k3b5qCBcx8VFSqZrl9dbbzdwhGasTb2WIjXQY37V9ivVo6L%2Bx2fmA04qYaoZfsZvrforc3sPeXkgjpORiT7rQYLhCfDVFX2PI6MYjYuNWNNAzw%2FhZeiYcOO%2BpyfinyYXWqoiv2OutzW0P3rk6lfHHVLG4UlyW7pfEU9AutD0CQIO5wQHIdcp5FGZVNRDj0sCoF1rO48GKStz6rzAtWrikiU%2Bb34%2FGjyAUmC4aUlMPgTp8vb%2FnXXkbXGwyhLZM8vK8XfBSNmJ%2F6em%2By1Jk4RqDRJRo5yT6PM3vl1LQjDP%2FBeBRoKMCE8RGtaEBIGQRXoTJoWsE%2BJDELXaFrOoV7x1xknw4Y2ODMpo34NBTeS12ninYMWAriWho23Z1ylzCaufSEBjrqAXSQNFKvcmJcCJeEtOlqbgJu6vYUzjJeXVoExQU8OwyL2SsvH%2BpWwNkddDxa8gJYqbMCpEjI1RLFW7HRsoT9u6ELwPS8isA6dVwUgaOyBIOi5C4y8jcB1WAjURkCAxFAcGmLBaKGL3ouMN8wHb0%2FzZZyuu1z5VYVgrqpezIMDqnKdHIdk3DdpiIrgfttbupqfQxvs61J8SALt9FRqP%2FZeYfVJERH5XxRZjIlLEznjxuvJO4MfZN7OdxC%2BpxEHT3fXpbF97wUSB%2F%2Bx95luDJnJTDxBLjabPn%2BxnkJHnkxu3lM1Uek8%2BkbVfOJ8w%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210513T134352Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY7U45X7GZ%2F20210513%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=432fa26286c5e82d28596abceb21883601361b6c9b8f71e2851b756c509d6b6d&hash=b82b93413e3dc9109b25f35981635b68118ee6f9fb4032bee822d0523c584c66&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0264410X19309703&tid=spdf-b3ededf1-60db-4f71-8e14-d4948f2d87e0&sid=6eaea51e9b6b4347a86bf1991f915ec6a37fgxrqa&type=client
https://www.sciencedirect.com/science/article/pii/S0264410X19315956?casa_token=FQWZivesbY8AAAAA:0Nj6shdLdPhPOl6TbTniZld-ZwXZdde5NM6iy0MZTG3TKtEJ2CwdUICSzgydsds3r6w3AQygAQ
https://www.annfammed.org/content/15/6/507?sf174332549=1
https://www.nature.com/articles/s41562-018-0432-2
https://oes.gsa.gov/vaccines/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3812023
https://journals.sagepub.com/doi/full/10.1177/1529100618760521
https://www.sciencedirect.com/science/article/pii/S0264410X15005058
https://www.sciencedirect.com/science/article/pii/S0264410X15005058
https://www.sciencedirect.com/science/article/pii/S0264410X15005046
https://www.mdpi.com/967546
https://bpspsychub.onlinelibrary.wiley.com/doi/full/10.1111/bjhp.12340


knowledge show depressed rates of vaccination due to message reminders. Thus, while some
messages may be more effective than others, there was no indication that any would have
negative effects on vaccine uptake.

For the complete list of messages used, see Extended Data Table 1.

Figure S1. Message selection process.



SI.2. Message reweighting (adaptive design)

In assigning individual treatments, we employ the following strategy. First, for each week , we𝑤
draw individuals from our remaining pool uniformly at random. For each of these people,𝑁

𝑤
𝑁

𝑤
with probability , we assign them uniformly at random to one of our nine messaging arms.ϵ

𝑤
With probability , we utilize a Thompson Sampler to assign them one of the nine(1 − ϵ

𝑤
)

messaging arms. For this experiment, we took (since no information is available at timeϵ
1

= 1
1), , and .ϵ

2
= 0. 25 ϵ

3
= 0. 33

Specifically, before each assignment time , we consider the people who had been𝑡 𝑚
𝑎𝑡

assigned to arm by that point. Of those individuals, let be the number of individuals𝑎 𝑚
𝑎𝑡

𝑠
𝑎𝑡

assigned to arm who by time had received a vaccine or scheduled an appointment for a𝑎 𝑡
vaccine according to RIDOH’s records. Let be the number who had not. Let𝑓

𝑎𝑡
= 𝑚

𝑎𝑡
 −  𝑠

𝑎𝑡
be the posterior distribution at time of the true probability𝑝

𝑎𝑡
∼ 𝐵𝑒𝑡𝑎(α + 𝑠

𝑎𝑡
, β + 𝑓

𝑎𝑡
) 𝑡 𝑝

𝑎
that an individual enrolled in arm will receive a vaccine. Here we take a prior𝑎 𝐵𝑒𝑡𝑎(α, β)
distribution for with a hyperprior .𝑝

𝑎
π(α, β) ∝ (α + β)−2.5

Then if an individual is to be assigned by the Thompson sampler at time , we draw𝑖 𝑡
realizations from each of the distributions and assign individual to .𝑞

𝑎𝑡𝑖
𝑝

𝑎𝑡
𝑖 𝑎

𝑖
= 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎
 𝑞

𝑎𝑡𝑖

This strategy, which Caria et al. (2020) call Tempered Thompson Sampling, though we
prefer the term -bounded Thompson Sampling, allows us to interpolate between gatheringϵ
maximum information about each arm (uniform assignment to each arm) and maximizing
expected reward at the cost of not gathering information about some arms (Thompson sampling).

Intuitively, the process resembles a Bayesian reasoner: if more people in the message 1
group than in the control group engage in the desired behavior during the first iteration, then
during the second iteration the probability that anyone receives message 1 will increase slightly,
thus making the design responsive to incoming evidence.

We note that while our ultimate outcome was vaccination, our Thompson Sampler
utilized sign-ups as well. Some noise entered into this list, due to the deduplication process
employed in matching individual testing records. This led to approximately 39% of those phone
numbers which had a record of either a vaccination or a sign-up after the first week of the study
to reappear in the eligible population after the second week of the study. However, a χ2 test
indicates that this noise was not significantly different between arms (p = 0.83). This error limits
interpretation of the results to do with adaptation (see SI.4 EQ6) but not those relevant to the
primary research question of the study, which is answered through average treatment effects by
message condition regardless of the likelihood that a given individual would receive a particular
message.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3689456


Figure S2. Overview of -bounded Thompson sampler.ϵ



SI.3. Additional pre-registered analyses.

These analyses were registered at https://osf.io/pkhae/. All asymptotic tests were paired with
permutation based tests. All results were the same so only asymptotic tests reported here. Below
we use the R statistical analysis language and within it the cmh_test() function from the coin
package (which enables both asymptotic and permutation based randomization inferences) and
lm_robust() from the estimatr package (which produces randomization justified HC2
standard errors by default). Code for all analyses, including permutation tests, is available at
http://github.com/thepolicylab/thepolicylab/COVID-SMSExperiment.

RQ0: Is there any effect of condition assignment?
rq0_asym <- cmh_test(vaccinatedF ~ messageF | date_sentF, data = wrkdat,
distribution = asymptotic())
rq0_asym

Asymptotic Generalized Cochran-Mantel-Haenszel Test
data:  vaccinatedF by

messageF (message_0, message_1, message_2, message_3, message_4,
message_5, message_6, message_7, message_8)

stratified by date_sentF
chi-squared = 13, df = 8, p-value = 0.1
pvalue(rq0_asym)
[1] 0.1153

RQ1: Is there an effect of receiving a message as opposed to not receiving a
message?

rq1_asym <- cmh_test(vaccinatedF ~ not_controlF | date_sentF, data = wrkdat,
distribution = asymptotic())
rq1_asym

Asymptotic Generalized Cochran-Mantel-Haenszel Test
data:  vaccinatedF by not_controlF (0, 1)

stratified by date_sentF
chi-squared = 1.2, df = 1, p-value = 0.3
pvalue(rq1_asym)
[1] 0.2663
rq1_est <- difference_in_means(vaccinated ~ not_controlF, blocks =
date_sentF, data = wrkdat)
rq1_est
Design:  Blocked

Estimate Std. Error t value Pr(>|t|)  CI Lower CI Upper     DF
not_controlF -0.00147   0.001363  -1.079   0.2806 -0.004141 0.001201 142402

https://osf.io/pkhae/
http://github.com/thepolicylab/thepolicylab/COVID-SMSExperiment


RQ2: Does any given message differ from control (focal tests)?

rq2_est <- lm_robust(vaccinated ~ messageF, weights = IPW_weight_multarm,
data = wrkdat)
rq2_est

Estimate Std. Error  t value  Pr(>|t|)  CI Lower  CI Upper
DF
(Intercept)        0.02060861   0.001312 15.71145 1.406e-55  0.018038 0.0231795
142419
messageFmessage_1 -0.00208199   0.001842 -1.13002 2.585e-01 -0.005693 0.0015291
142419
messageFmessage_2 -0.00002266   0.001898 -0.01194 9.905e-01 -0.003742 0.0036968
142419
messageFmessage_3  0.00232052   0.002012  1.15339 2.488e-01 -0.001623 0.0062638
142419
messageFmessage_4 -0.00222375   0.001863 -1.19395 2.325e-01 -0.005874 0.0014267
142419
messageFmessage_5  0.00015034   0.001886  0.07972 9.365e-01 -0.003546 0.0038467
142419
messageFmessage_6 -0.00260175   0.001719 -1.51333 1.302e-01 -0.005971 0.0007679
142419
messageFmessage_7 -0.00316289   0.001824 -1.73444 8.284e-02 -0.006737 0.0004113
142419
messageFmessage_8 -0.00012584   0.001844 -0.06826 9.456e-01 -0.003739 0.0034876
142419
## Adding the fixed effects estimates (biased, but more precise/statistically
powerful) No substantive difference. This was not what we pre-registered: we
pre-registered using the unbiased block-size weighting approach above. We
report using the above analysis but present the fixed effects FYI.
rq2_fe_est <- lm_robust(vaccinated ~ messageF, fixed_effects = ~date_sentF,
data = wrkdat)
rq2_fe_est

Estimate Std. Error t value Pr(>|t|)  CI Lower  CI Upper     DF
messageFmessage_1 -0.0022322   0.002007 -1.1125  0.26595 -0.006165 0.0017006 142407
messageFmessage_2 -0.0002051   0.001966 -0.1044  0.91688 -0.004058 0.0036474 142407
messageFmessage_3  0.0005308   0.002000  0.2654  0.79071 -0.003390 0.0044514 142407
messageFmessage_4 -0.0029133   0.002013 -1.4469  0.14792 -0.006860 0.0010330 142407
messageFmessage_5 -0.0006247   0.001874 -0.3334  0.73881 -0.004297 0.0030474 142407
messageFmessage_6 -0.0027722   0.001567 -1.7690  0.07689 -0.005844 0.0002992 142407
messageFmessage_7 -0.0034071   0.001902 -1.7915  0.07321 -0.007135 0.0003204 142407
messageFmessage_8  0.0004312   0.002011  0.2144  0.83020 -0.003510 0.0043723 142407
## Verifying the p-values above with a permutation based cmh test for each
message versus control
test_msgs <- function(msg1, msg2) {
## msg1 and msg2 are strings indicating message assignment in messageF
effect_test <- cmh_test(vaccinatedF ~ messageF | date_sentF,
data = wrkdat,
subset = wrkdat$messageF %in% c(msg1, msg2),
distribution = approximate(nresample = 10000, parallel = "multicore",

ncpu = 6)
)
return(pvalue(effect_test)[1])



}
message_test_ps <- sapply(levels(wrkdat$messageF)[-1], function(msg) {
test_msgs("message_0", msg)

})

message_test_ps
message_1 message_2 message_3 message_4 message_5 message_6 message_7 message_8

0.2778    1.0000    0.7040    0.1866    0.9335    0.1025    0.0502    0.8985

We specified that we would report adjusted p-values, although it is not necessary since we are
not reporting any discoveries. We did the adjustment and show it in the Github repository but do
not report them here.

RQ3: Does epistemic humility help?

Message 4 vs. 3 (CMH test, difference of proportions estimator). Only very small differences
between those two arms.

rq3_est <- difference_in_means(vaccinated ~ messageF, blocks = date_sent,
data = wrkdat, subset = wrkdat$messageF %in% c("message_3", "message_4"))
rq3_est
Design:  Blocked

Estimate Std. Error t value Pr(>|t|) CI Lower  CI Upper    DF
messageFmessage_4 -0.003194   0.002074   -1.54   0.1235 -0.00726 0.0008707 22046
rq3_test <- test_msgs("message_3", "message_4")
rq3_test
[1] 0.1083

RQ5: How do social proof and appeals to the family interact?

We will test the overall hypothesis of no difference between 6 (family concern), 7 (social proof),
and 8 (family concern + social proof). If we reject this, we test 6 versus 8 and 7 versus 8.

rq5_overall <- cmh_test(vaccinatedF ~ messageF | date_sentF, data = wrkdat,
subset = wrkdat$messageF %in% c("message_6", "message_7", "message_8"))
rq5_overall

Asymptotic Generalized Cochran-Mantel-Haenszel Test

data:  vaccinatedF by
messageF (message_6, message_7, message_8)
stratified by date_sentF

chi-squared = 5.1, df = 2, p-value = 0.08

RQ6: Did adaptive randomization increase vaccinations over fixed
randomization?

We also will report the effect of using adaptive randomization versus fixed randomization on
total vaccinations –- since we withheld 25% of each of the three weeks experimental pools for



fixed randomization and adapted the other 100 – 25%. Our aim in this study was to (1) learn
about which messages worked best but also (2) increase vaccination. The fixed randomization
maximized statistical power to detect effects whereas the adaptive randomization increased the
numbers of people exposed to more effective messages.

rq6_est <- difference_in_means(vaccinated ~ is_chosen_from_uniform, blocks =
date_sentF, data = wrkdat, subset = wrkdat$date_sent >= "2021-06-02")
rq6_est
Design:  Blocked

Estimate Std. Error t value Pr(>|t|)   CI Lower CI Upper
DF
is_chosen_from_uniform 0.0009958  0.0008211   1.213   0.2252 -0.0006135 0.002605
102410
rq6_cmh_perm <- cmh_test(vaccinatedF ~ factor(is_chosen_from_uniform) |
date_sentF, data = wrkdat, subset = wrkdat$date_sent >= "2021-06-02",
distribution = approximate(nresample = 10000, parallel = "multicore", ncpus =
6))
rq6_cmh_perm

Approximative Generalized Cochran-Mantel-Haenszel Test
data:  vaccinatedF by

factor(is_chosen_from_uniform) (FALSE, TRUE)
stratified by date_sentF

chi-squared = 1.5, p-value = 0.2



SI.4. Exploratory analyses, pre-registered

EQ1: Do explicit appeals to the safety of vaccines increase responses in areas
with higher proportions of Black or Latinx people? Message 2 vs. control

We cannot detect any simple linear differential effect of pct black or latinx on the message 2
versus control comparison.versus control comparison.

wrkdat3_eq1 <- wrkdat3 %>%
filter(messageF %in% c("message_0", "message_2") & zcta != "00000") %>%
droplevels()

make_weights <- function(dat) {
block_m_each <- with(dat, table(date_sentF, messageF, exclude = c()))
block_prob_each <- block_m_each / rowSums(block_m_each)
declared_randomization <- declare_ra(blocks = dat$date_sentF, block_m_each

= block_m_each, conditions = sort(unique(dat$messageF)))
IPW_weight <- 1 / obtain_condition_probabilities(declaration =

declared_randomization, assignment = dat$messageF)
stopifnot(all.equal(sort(unique(1 / IPW_weight)),

sort(unique(block_prob_each))))
return(IPW_weight)

}

wrkdat3_eq1$IPW_eq1 <- make_weights(wrkdat3_eq1)
eq1_blk_estA <- lm_robust(vaccinated ~ messageF * pct_any_blk, data =
wrkdat3_eq1, weights = IPW_eq1)

eq1_blk_estA
Estimate Std. Error   t value  Pr(>|t|)  CI Lower CI Upper    DF

(Intercept)                    0.0188928   0.002016  9.370867 7.829e-21  0.014941 0.022845 23245
messageFmessage_2             -0.0002165   0.002783 -0.077775 9.380e-01 -0.005672 0.005239 23245
pct_any_blk                    0.0538385   0.018998  2.833943 4.602e-03  0.016602 0.091075 23245
messageFmessage_2:pct_any_blk -0.0002156   0.026120 -0.008253 9.934e-01 -0.051413 0.050982 23245

eq1_lat_estA <- lm_robust(vaccinated ~ messageF * pct_hisp, data =
wrkdat3_eq1, weights = IPW_eq1)

eq1_lat_estA
Estimate Std. Error t value  Pr(>|t|)  CI Lower CI Upper    DF

(Intercept)                 0.018012   0.001849  9.7392 2.264e-22  0.014387 0.021637 23245
messageFmessage_2           0.001080   0.002534  0.4262 6.700e-01 -0.003887 0.006048 23245
pct_hisp                    0.034689   0.009438  3.6756 2.378e-04  0.016191 0.053187 23245
messageFmessage_2:pct_hisp -0.007924   0.012534 -0.6322 5.272e-01 -0.032492 0.016643 23245

EQ2: Does the implication of choice through emphasis on a conspicuous
advantage increase responses in areas with higher proportions of Republican
people? Message 3 vs. control

No detectable difference in effects.



wrkdat3_eq2 <- wrkdat3 %>%
filter(messageF %in% c("message_0", "message_3") & zcta != "00000") %>%
droplevels()

wrkdat3_eq2$IPW_eq2 <- make_weights(wrkdat3_eq2)

eq2_gop_estA <- lm_robust(vaccinated ~ messageF * pct_gop, data =
wrkdat3_eq2, weights = IPW_eq2)
eq2_gop_estA

Estimate Std. Error t value  Pr(>|t|) CI Lower  CI Upper    DF
(Intercept)                0.033399    0.00480  6.9582 3.541e-12  0.02399  0.042808 22768
messageFmessage_3         -0.002249    0.00661 -0.3402 7.337e-01 -0.01520  0.010707 22768
pct_gop                   -0.027623    0.01238 -2.2321 2.562e-02 -0.05188 -0.003366 22768
messageFmessage_3:pct_gop  0.009509    0.01705  0.5576 5.771e-01 -0.02392  0.042935 22768

EQ3: Do explicit appeals to ease of access increase responses in areas with
higher proportions of Black or Latinx people? Message 5 vs. control

No detectable differences. Magnitude of moderation is not small given this phenomenon (on
order of 1 or 2 pts, but negative).

wrkdat3_eq3 <- wrkdat3 %>%
filter(messageF %in% c("message_0", "message_5") & zcta != "00000") %>%
droplevels()

wrkdat3_eq3$IPW_eq3 <- make_weights(wrkdat3_eq3)

eq3_blk_estA <- lm_robust(vaccinated ~ messageF * pct_any_blk, data =
wrkdat3_eq3, weights = IPW_eq3)
eq3_blk_estA

Estimate Std. Error t value  Pr(>|t|) CI Lower CI Upper    DF
(Intercept)                    0.018567   0.002043  9.0861 1.098e-19  0.01456 0.022572 25930
messageFmessage_5              0.001946   0.002743  0.7095 4.780e-01 -0.00343 0.007322 25930
pct_any_blk                    0.051307   0.019179  2.6752 7.473e-03  0.01372 0.088898 25930
messageFmessage_5:pct_any_blk -0.026276   0.025041 -1.0493 2.940e-01 -0.07536 0.022805 25930

eq3_lat_estA <- lm_robust(vaccinated ~ messageF * pct_hisp, data =
wrkdat3_eq3, weights = IPW_eq3)

eq3_lat_estA
Estimate Std. Error t value  Pr(>|t|)  CI Lower CI Upper    DF

(Intercept)                 0.017433   0.001874  9.3041 1.455e-20  0.013760  0.02111 25930
messageFmessage_5           0.001536   0.002512  0.6114 5.410e-01 -0.003388  0.00646 25930
pct_hisp                    0.034860   0.009734  3.5814 3.424e-04  0.015782  0.05394 25930
messageFmessage_5:pct_hisp -0.011863   0.012585 -0.9426 3.459e-01 -0.036531  0.01280 25930

EQ4: Does epistemic humility increase responses in areas with higher
proportions of either Black or Latinx people or Republican people? Message 4
versus 3

No detectable differences in effect.



wrkdat3_eq4 <- wrkdat3 %>%
filter(messageF %in% c("message_3", "message_4") & zcta != "00000") %>%
droplevels()

wrkdat3_eq4$IPW_eq4 <- make_weights(wrkdat3_eq4)

eq4_gop_estA <- lm_robust(vaccinated ~ messageF * pct_gop, data =
wrkdat3_eq4, weights = IPW_eq4)
eq4_gop_estA

Estimate Std. Error t value  Pr(>|t|) CI Lower CI Upper    DF
(Intercept)                0.031424   0.004622  6.7992 1.079e-11  0.02237 0.040483 21573
messageFmessage_4         -0.002244   0.006677 -0.3360 7.369e-01 -0.01533 0.010844 21573
pct_gop                   -0.018053   0.011944 -1.5115 1.307e-01 -0.04146 0.005358 21573
messageFmessage_4:pct_gop -0.003277   0.017226 -0.1902 8.491e-01 -0.03704 0.030487 21573

eq4_blk_estA <- lm_robust(vaccinated ~ messageF * pct_any_blk, data =
wrkdat3_eq4, weights = IPW_eq4)
eq4_blk_estA

Estimate Std. Error  t value  Pr(>|t|)  CI Lower CI Upper    DF
(Intercept)                    0.019125   0.002084  9.17906 4.730e-20  0.015041  0.02321 21573
messageFmessage_4             -0.003302   0.002909 -1.13507 2.564e-01 -0.009003  0.00240 21573
pct_any_blk                    0.067888   0.020681  3.28267 1.030e-03  0.027352  0.10842 21573
messageFmessage_4:pct_any_blk -0.001599   0.028836 -0.05547 9.558e-01 -0.058120  0.05492 21573

eq4_lat_estA <- lm_robust(vaccinated ~ messageF * pct_hisp, data =
wrkdat3_eq4, weights = IPW_eq4)
eq4_lat_estA

Estimate Std. Error t value  Pr(>|t|)  CI Lower CI Upper    DF
(Intercept)                 0.018922   0.001878 10.0774 7.851e-24  0.015242 0.022603 21573
messageFmessage_4          -0.002755   0.002664 -1.0345 3.009e-01 -0.007976 0.002465 21573
pct_hisp                    0.038470   0.009790  3.9294 8.542e-05  0.019280 0.057660 21573
messageFmessage_4:pct_hisp -0.004235   0.013966 -0.3032 7.617e-01 -0.031610 0.023140 21573

EQ5: Is there a day-of-week effect? Proportions of vaccinations collapsed across
all messages by day.

Since the randomization to message occurred within a given date and we have relatively few
weeks, it is difficult to disentangle day of week effects from date effects. So, we only present
descriptive information here.

table(weekdays(wrkdat3$date_sent))

Friday    Monday  Thursday   Tuesday Wednesday
33626     23621     33619     17940     33622

wrkdat3$weekday_sent <- weekdays(wrkdat3$date_sent)

wrkdat3_weekday <- wrkdat3 %>%
group_by(weekday_sent) %>%
summarize(



prop_vac = mean(vaccinated),
prop_vac_in_week = mean(vac_in_week), nweek = n()

)

wrkdat3_weekday
# A tibble: 5 x 4
weekday_sent prop_vac prop_vac_in_week nweek
<chr>           <dbl>            <dbl> <int>

1 Friday        0.0181           0.00803 33626
2 Monday        0.00923          0.00703 23621
3 Thursday      0.0195           0.00943 33619
4 Tuesday       0.0294           0.0109  17940
5 Wednesday     0.0218           0.0102  33622

EQ6: Is there an iteration effect? Some people were randomly assigned to have 3
weeks to schedule a vaccination and others only 1 week before the study ended.
We explore whether there is a difference here.

The following table shows that we have no strong arguments against the claim that our messages
were the same as control in regards either vaccination at all or vaccination within a week,
regardless of whether the messages were sent in the first, second, or third weeks of the study. We
present raw p-values here because this is exploratory work and do not adjust because we have so
few small p-values: for example, we are not interpreting the effect of message_7 in week 1 or the
effect of message_3 in week 3 below as discoveries.

test_msgs2 <- function(msg1, msg2, the_iteration, thefmla = vaccinatedF ~
messageF | date_sentF) {
## msg1 and msg2 are strings indicating message assignment in messageF
effect_test <- cmh_test(thefmla,
data = wrkdat3,
subset = wrkdat3$messageF %in% c(msg1, msg2) & wrkdat3$iteration ==

the_iteration,
distribution = asymptotic()

# no difference when we used permutation tests, for speed switching to
asymptotic tests
# approximate(nresample = 10000, parallel = "multicore", ncpu = 6)
)
return(pvalue(effect_test)[1])

}

msg_by_iteration <- as_tibble(expand.grid(iteration = 1:3, messageF =
levels(wrkdat3$messageF)[-1], stringsAsFactors = FALSE))

msg_by_iteration <- msg_by_iteration %>%
rowwise() %>%
mutate(p_vs_ctrl = test_msgs2("message_0", messageF, iteration)) %>%
arrange(iteration, messageF)



msg_by_iteration <- msg_by_iteration %>%
rowwise() %>%
mutate(p_vac_week_vs_ctrl = test_msgs2("message_0", messageF, iteration,

thefmla = vac_in_weekF ~ messageF | date_sentF))

msg_by_iteration <- msg_by_iteration %>% mutate(p_vac_week_vs_ctrl =
ifelse(p_vac_week_vs_ctrl == p_vs_ctrl, NA, p_vac_week_vs_ctrl))
print(msg_by_iteration, n = 100)
# A tibble: 24 x 4
# Rowwise:

iteration messageF  p_vs_ctrl p_vac_week_vs_ctrl
<int> <chr>         <dbl>              <dbl>

1         1 message_1   0.414               0.624
2         1 message_2   0.777               0.776
3         1 message_3   0.485               0.554
4         1 message_4   0.0950              0.151
5         1 message_5   0.432               0.999
6         1 message_6   0.174               0.368
7         1 message_7   0.00849             0.185
8         1 message_8   0.911               0.458
9         2 message_1   0.601               0.188
10         2 message_2   0.685               0.655
11         2 message_3   0.870               0.127
12         2 message_4   0.510               0.215
13         2 message_5   0.369               0.357
14         2 message_6   0.741               0.250
15         2 message_7   0.732               0.298
16         2 message_8   0.289               0.0548
17         3 message_1   0.541               0.731
18         3 message_2   0.988               0.893
19         3 message_3   0.0394              0.127
20         3 message_4   0.321               0.203
21         3 message_5   0.944               0.680
22         3 message_6   0.318               0.517
23         3 message_7   0.567               0.523
24         3 message_8   0.405               0.469

Nor is there strong evidence that “any message” was better than control, even when we assess
the relationships for each iteration separately:

rq8_iteration1_test <- cmh_test(vaccinatedF ~ not_controlF | date_sentF, data
= wrkdat3, subset = wrkdat3$iteration == 1)
rq8_iteration1_test

Asymptotic Generalized Cochran-Mantel-Haenszel Test
data:  vaccinatedF by not_controlF (0, 1)

stratified by date_sentF
chi-squared = 1, df = 1, p-value = 0.3
rq8_iteration2_test <- cmh_test(vaccinatedF ~ not_controlF | date_sentF, data
= wrkdat3, subset = wrkdat3$iteration == 2)



rq8_iteration2_test

Asymptotic Generalized Cochran-Mantel-Haenszel Test
data:  vaccinatedF by not_controlF (0, 1)

stratified by date_sentF
chi-squared = 0.0055, df = 1, p-value = 0.9
rq8_iteration3_test <- cmh_test(vaccinatedF ~ not_controlF | date_sentF, data
= wrkdat3, subset = wrkdat3$iteration == 3)
rq8_iteration3_test

Asymptotic Generalized Cochran-Mantel-Haenszel Test
data:  vaccinatedF by not_controlF (0, 1)

stratified by date_sentF
chi-squared = 0.57, df = 1, p-value = 0.5
## Also looking at vaccinations within a week for the first iteration
rq9_iteration1_test <- cmh_test(vac_in_weekF ~ not_controlF | date_sentF,
data = wrkdat3, subset = wrkdat3$iteration == 1)
rq9_iteration1_test

Asymptotic Generalized Cochran-Mantel-Haenszel Test
data:  vac_in_weekF by not_controlF (0, 1)

stratified by date_sentF
chi-squared = 0.36, df = 1, p-value = 0.6
rq9_iteration2_test <- cmh_test(vac_in_weekF ~ not_controlF | date_sentF,
data = wrkdat3, subset = wrkdat3$iteration == 2)
rq9_iteration2_test

Asymptotic Generalized Cochran-Mantel-Haenszel Test
data:  vac_in_weekF by not_controlF (0, 1)

stratified by date_sentF
chi-squared = 1.9, df = 1, p-value = 0.2
rq9_iteration3_test <- cmh_test(vac_in_weekF ~ not_controlF | date_sentF,
data = wrkdat3, subset = wrkdat3$iteration == 3)
rq9_iteration3_test

Asymptotic Generalized Cochran-Mantel-Haenszel Test=
data:  vac_in_weekF by not_controlF (0, 1)

stratified by date_sentF
chi-squared = 0.34, df = 1, p-value = 0.6



SI.5. Exploratory Analyses, not pre-registered

Effects on vaccination within a week

The experiment ran during a time of national campaigns in favor of vaccination. The control
group in our experiment would have been exposed to this, and thus, might have gotten
vaccinated for reasons other than a nudge from a text message.

No strong evidence that people were likely to be vaccinated within a week in “any message”
versus control or versus any given message.

rq7_test <- cmh_test(vac_in_weekF ~ not_controlF | date_sentF, data = wrkdat)
rq7_test

Asymptotic Generalized Cochran-Mantel-Haenszel Test

data:  vac_in_weekF by not_controlF (0, 1)
stratified by date_sentF

chi-squared = 0.00041, df = 1, p-value = 1
rq7a_test <- cmh_test(vac_in_weekF ~ messageF | date_sentF, data = wrkdat)
rq7a_test

Asymptotic Generalized Cochran-Mantel-Haenszel Test

data:  vac_in_weekF by
messageF (message_0, message_1, message_2, message_3, message_4,

message_5, message_6, message_7, message_8)
stratified by date_sentF

chi-squared = 8.7, df = 8, p-value = 0.4
rq7a_est <- lm_robust(vac_in_week ~ messageF, weights = IPW_weight_multarm,
data = wrkdat)
rq7a_est

Estimate Std. Error   t value  Pr(>|t|)   CI Lower CI Upper     DF
(Intercept)        0.009127748  0.0009266  9.851260 6.884e-23  0.0073117 0.010944 142419
messageFmessage_1  0.000124368  0.0013438  0.092548 9.263e-01 -0.0025095 0.002758 142419
messageFmessage_2  0.000262444  0.0013718  0.191314 8.483e-01 -0.0024263 0.002951 142419
messageFmessage_3  0.002280338  0.0014842  1.536381 1.244e-01 -0.0006287 0.005189 142419
messageFmessage_4 -0.001289688  0.0012946 -0.996239 3.191e-01 -0.0038270 0.001248 142419
messageFmessage_5 -0.000005737  0.0013428 -0.004273 9.966e-01 -0.0026376 0.002626 142419
messageFmessage_6 -0.000254321  0.0011945 -0.212902 8.314e-01 -0.0025956 0.002087 142419
messageFmessage_7 -0.000963766  0.0013199 -0.730162 4.653e-01 -0.0035508 0.001623 142419
messageFmessage_8  0.000933308  0.0013295  0.702014 4.827e-01 -0.0016724 0.003539 142419



SI.6. Sources of noise in the dataset

As with any study drawing on government data, noise in our initial dataset is inevitable. Dai and
colleagues independently estimated base rates of vaccination in Rhode Island during the study
period adjusted for the randomization scheme used here and found a rate of 5.67%, almost three
times the rate in our data. This raises two questions: (1) Could the discrepancy reflect some
systematic difference between our population and the true population of vaccine-hesitant people
that undermines our interpretation of the null result? And (2) could the discrepancy reflect a
problem with the initial dataset such that the null is explained by insufficient power to detect a
true effect?

SI.6.1. Does the base rate discrepancy suggest underlying characteristics of our population that
undermine our interpretation?

A possible explanation for the discrepancy is that noise inherent in our dataset depressed the
observed base rate. Almost certainly, some phone numbers were entered erroneously by
participants or testing site staff, while others reflected individuals tested in Rhode Island but
vaccinated elsewhere. Providence, the largest city, has a transient student population, and many
Rhode Islanders work in neighboring states, both of which could affect where an individual got
vaccinated. These factors would effectively increase the initial sample size of our study by
making it appear that we had more phone numbers of unvaccinated residents than we actually
did, thus decreasing our observed base rate by increasing our denominator.

We also note that some people share phone numbers, especially those in group quarters
such as nursing homes. Only the first person vaccinated with a particular phone number would
count in our numerator (if no one with that phone number had been vaccinated by the start of our
study) or denominator. Of course, people would not receive text messages at all if they provided
a land line—an issue we return to in section SI.6.2.

Another possibility is that design features contributed to the discrepancy. As far as we
could tell, Dai et al.’s estimate did not remove people under 18, a population that was excluded
from our study but could and did get vaccinated during the study period. To the extent that
minors were helping to drive the state’s topline numbers but were not in our study, our base rate
would be lower than the state’s; our own calculations suggest this was the case to a small degree.
Moreover, as noted in the original manuscript, some vaccination sites like Veterans hospitals
report aggregate numbers but not individual vaccination information to the state, which would
contribute to topline vaccination rates without being matched to an individual. Despite these
sources of uncertainty in our initial dataset—a problem for most research using administrative
data—the entries were randomly assigned. So invalid phone numbers or people who got
vaccinated out of state were no more or less likely to appear in treatment or control conditions.
Moreover, we do not see how our population of ostensibly vaccine-hesitant individuals is



confounded by omitting adolescents4, veterans,5 or VA hospital staff6, since these groups have
been less—or at best, equally—likely to get vaccinated relative to the general population. If
anything, their exclusion from our population should push the result toward seeing a treatment
effect rather than not.

In sum, while there are several, non-exclusive, possibilities as to why our base rate is
lower than Dai and colleagues’ estimate, none seemingly account for the observed lack of
message effects and therefore threaten our interpretation that the critical time window for nudges
had passed.

SI.6.2. If the base rate discrepancy were due to invalid entries, would it change the result?

Random assignment aside, we might ask whether invalid entries and/or artificial inflation of
sample size meant the true population size did not provide sufficient power to detect an effect.
Let us consider the worst-case scenario where two-thirds of our initial dataset was invalid.

In this scenario, the number of outcomes coded as non-vaccinations would have
decreased by two-thirds in each arm. Excluding these theoretical bad entries would increase the
base rate while decreasing sample size. Although Milkman et al.7 were sufficiently powered to
find a ~2% increase in flu vaccinations due to the message we used as a base text with a sample
size (N = 47,306) roughly equivalent to one-third of ours (142,428/3 = 47,476), we nonetheless
thought it appropriate to examine the issue further with an example. Consider that we recorded
300 vaccinations in the “Access” message condition and about 265 vaccinations in the control
condition during the study period. Now we may imagine an experiment with this outcome and
roughly 15,000 people in the treatment condition and 15,000 in the control condition. Without
blocking or other complex design features, this would yield an effect estimate of about .002 =
(300/15000) – (265/15000) and p = .14 using Neyman-style randomization inference from the R
command lm_robust() (see https://github.com/thepolicylab/COVID-SMSExperiment for code
and analysis). What would we see if instead of 15,000 total observations, we had only one-third
that number? We would increase our effect size (300/5000) – (265/5000) = .007, but the loss of
sample size would not appreciably improve our statistical power  (p = .13). In order for the
reduction of our denominator to make an increased effect size that is statistically significant, we
would need to reduce the sample to 600 people in each arm (300 / 600) – (265 / 600) = .06, p =
.04. Although we have noted several likely sources of noise above, it is extremely unlikely that
96% (1 – 600/15000 = .96) of our initial entries were invalid due to these sources. Even if

7 Milkman et al. (2021). A megastudy of text-based nudges encouraging patients to get vaccinated at an upcoming
doctor’s appointment. PNAS.

6 Meyer et al. (2021). Trends in health care worker intentions to receive a COVID-19 vaccine and reasons for
hesitancy. JAMA.

5 Thorpe et al. (2021). Communicating about COVID-19 vaccine development and safety. medR𝜒iv.

4 Scherer et al. (2021). Acceptability of adolescent COVID-19 vaccination among adolescents and parents of
adolescents — United States, April 15–23, 2021. MMWR.

https://www.pnas.org/content/118/20/e2101165118?s=09
https://www.pnas.org/content/118/20/e2101165118?s=09
https://jamanetwork.com/journals/jamanetworkopen/article-abstract/2777776
https://jamanetwork.com/journals/jamanetworkopen/article-abstract/2777776
https://www.medrxiv.org/content/10.1101/2021.06.25.21259519v2
https://www.cdc.gov/mmwr/volumes/70/wr/mm7028e1.htm?s_cid=mm7028e1_w
https://www.cdc.gov/mmwr/volumes/70/wr/mm7028e1.htm?s_cid=mm7028e1_w


two-thirds of our entries were invalid, which we also consider unlikely, a true effect would not be
masked by insufficient power.
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