
Class 2 — iTV Experiments
The ATE
Jake Bowers

0. Get ready to work:

Today we will be trying to replicate the results of a small field experiment run by my friend Costas Panagopoulos. He ran a field
experiment run just prior to the Mayoral elections of 2005. From the experimental pool of 8 cities, he matched them (by hand,
based roughly on previous turnout) into 4 pairs. Within each pair 1 city was randomly assigned to receive newspaper advertisements
urging citizens to vote and 1 received no intervention.

Load the data:
load(url("http://jakebowers.org/PS590/news.wide.rda"))

If you run the following code you can see the pairs (“s” is the stratum indicator, “z” is the treatment assignment indicator, and “r”
is the outcome.)

news.exp<-news.wide[1:8,c("s","z","r","pop2000","rpre")]

news.exp

1. Now, let us turn to Neyman’s solution to the fundamental problem of causal inference. Here is a table showing the treatment
assignment status, outcomes, and potential outcomes for this experiment.

i Zi yi yi1 yi0
Saginaw 0 16 ? 16
Sioux City 1 22 22 ?
Battle Creek 0 14 ? 14
Midland 1 7 7 ?
Oxford 0 23 ? 23
Lowell 1 27 27 ?
Yakima 0 58 ? 58
Richland 1 61 61 ?

Table 1: Treatment assignment (Z), observed turnout (y), and unobserved potential outcomes (y1, y0) for Cities (i) in the Newspapers
Experiment.

Please write down an expression for defining a simple additive, linear, individual level causal effect (we could call this effect τi).

τi = yi,1 − yi,0

2. Now, we cannot actually calculate τi . How would Fisher have suggested we try to use what we observe (say, in that table above),
to learn about τi?

He would have suggested that we hypothesize about τi, in particular, H0 : τi = 0 or H0 : yi1 = yi0. As you showed last time,
we can link a hypothesis about τi to what we do observe via the mechanism of randomization; and randomization allows us
to characterize the distribution of test statistics summarizing H0, and thus we can get a p-value.

3. There is another approach, most commonly associated with Neyman, although it is so wide-spread that many have stopped citing
Neyman’s 1923 article (which was only translated into English in 1990 anyway). How would Neyman fill in those “?” in the table
in order to reason about τi? Hint: This is a trick question.

He wouldn’t. Rather he would take averages over the entire column. Even if we cannot observe the individual “?” we can
know a lot about how the mean of a random sample relates to an unobserved population. We don’t have to observe the whole
population to draw inferences from the sample to the population. So, Neyman doesn’t require us to fill in the individual “?”.

4. So, Neyman changed the rules or asked different question.1 Neyman decided that he would be interested in differences of means
rather than in what actually happens to individual units. It turns out that this decision was very smart and convenient from a
mathematical perspective. So, his question was about τ̄ = (1/n)(

∑n
i=1 y1i)− (1/n)(

∑n
i=1 y0i) = ȳ1 − ȳ0 rather than about comparisons

of individual units’ potential outcomes. That is, Neyman wanted to ask questions about differences of means, and so, since a
hypothesis is a kind of question, he would write H0 : τ̄ = 0. Now, one way to get τ̄ = 0 is for y1i = y0i but there are many other

1For some of you, it will be useful to think about what Neyman did as akin to Kirk’s third response to the Kobayashi Maru test.
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ways for this to occur where y1i 6= y0i thus, we call Neyman’s hypothesis the “weak null hypothesis” in that it says less about the
relationships between the potential outcomes than Fisher’s “strong null hypothesis” does.

Now, why would a “weak null” also solve the causal inference problem? We still cannot observe y1i for everyone and so cannot
calculate ȳ1.

We’ll see this more vividly when we show that the sample ATE is an unbiased estimator of the difference in means of the
potential outcomes.

For now we can just say that our best estimate of average turnout in the population (i.e. the experimental pool, the “finite
population”) under treatment is the mean turnout among those assigned treatment.

with(news.exp,mean(r[z==1]))

[1] 29.2

5. What would be our best estimate of mean turnout in the control group in the population? Hint: Remember that by “population”
Neyman meant the 8 cities here.

with(news.exp,mean(r[z==0]))

[1] 27.8

6. So, what we have said (without proof so far but just using our intuitions about random sampling) is we can use sample means to
represent population means. And it would seem to follow that ˆ̄τ = (1/m)

∑n
i=1 ZiYi − (1/(n −m))

∑n
i=1(1 − Zi)Yi is a good estimator

of τ̄ (where m is number of treated observations and n is total number of observations). But what do we mean by a good estimator?

A good estimator is one that approaches the right answer more and more closely as we add more information (i.e. is
consistent). And, a good estimator is right on average (i.e. is unbiased) — on average across repeated realizations of the
data generation process (here across repeated assignments of treatment to these same cities in these same pairs).

7. So, you might have said, “consistent”, but we’ll focus on “unbiased” today (especially important for our little experiment where
consistency of estimtors is probably not a useful property!) Show that Ey[ ˆ̄τ] = τ̄ where Ey is “across all ways to draw assignments,
Z , from the urn.” Hint: (1) Ignore the pairing for today. We are just sampling 4 units for treatment from the population of 8 units:
this is a simply randomized experiment; (2) recall that only Z is random and that ER[Zi] = m/n because no pairs for now; (3) Recall
that yi = Ziy1i + (1−Zi)y0i or yi = y0i when Zi = 0 so we can write y1i for yi when we see ZiYi and y0i for yi when we see (1−Zi)Yi .
(4) We’ve defined τ̄ and ˆ̄τ in earlier questions.

So, earlier we linked what we could observe yi with what we had social science theory (or at least substantive concerns)
about, y1i , y0i. Using the observational identity and hypotheses.

This little derivation allows you to see how Neyman made the link between the observed outcomes and the potential outcomes.

Ey [τ̂] = Ey

 n∑
i=1

Zi
Yi

m
−

n∑
i=1

(1 − Zi)
Yi

n − m

 (1)

recall that yi = Ziy1i + (1 − Zi)y0i or yi = y0i when Zi = 0, etc.

= E
 n∑

i=1
Zi

y1i

m

 − E
 n∑

i=1
(1 − Zi)

y0i

n − m

 (2)

recall that only Z is random and that ER[Zi] = m/n because no pairs for now

=

n∑
i=1

m
n

y1i

m
−

n∑
i=1

(
1 −

m
n

) y0i

n − m
(3)

now (1 − (m/n) = (n − m)/n

=

n∑
i=1

y1i

n
−

n∑
i=1

y0i

n
(4)

= ȳ1i − ȳ0i = τ̄ (5)

8. Now, it was fun to do a little algebra, but let’s show that this is the case with a little simulation study. Explain what is happening
here. It may help to run each line and print the results.
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##First produce the set of possible random assignments within pairs

Omega1 <- combn(8,4,FUN=function(x){ tmp<-rep(0,8); tmp[x]<-1; return(tmp)})

dim(Omega1)

choose(8,4)

##Next set up some fake potential and observed outcomes. We are acting as if we could actually observe both

##potential outcomes.

set.seed(20121102)

news.exp$faker0<-rnorm(8,mean=mean(news.exp$r[news.exp$z==0]),sd=sd(news.exp$r[news.exp$z==0]))

news.exp$faker1<-rnorm(8,mean=mean(news.exp$faker0)+10,sd=sd(news.exp$r[news.exp$z==1]))

news.exp$obsr<-with(news.exp, z*faker1+(1-z)*faker0 )

##Now calculate the true ATE and the estimated ATE from the sample

(trueATE<-with(news.exp,mean(faker1)-mean(faker0)) )

(estATE<-with(news.exp,mean(obsr[z==1])-mean(obsr[z==0])))

##Now define a function which reveals a difference observed outcome and calculates

##a different mean difference given a different treatment vector

make.new.R.and.mean.diff<-function(thez){

newobsr<-with(news.exp, thez*faker1+(1-thez)*faker0 )

return(mean(newobsr[thez==1])-mean(newobsr[thez==0]))

}

##For every way possible to run the experiment, calculate this mean difference

dist.sample.mean.diff<-apply(Omega1,2,function(thez){

make.new.R.and.mean.diff(thez)

})

##Calculate the average of the randomization distribution of the mean difference (i.e. E(\hat{\bar{\tau}}))

(E.estATE<-mean(dist.sample.mean.diff))

##Show that this average is equal to the truth.

all.equal(E.estATE,trueATE)

9. Now let us get a little more clear on what the weak null means. So, in the last question the true τ̄ was about 3.85. Does this mean
that y1i > y0i for all i? Or that y1i = y0i + 3.85? Hint: In this simulation we actually created y1i and y0i (faker1 and faker0). Try
subtracting them to see what the true treatment effects are for each unit.

The weak null does not mean those things. In fact, the weak null has nothing to say about any individual city here. In fact,
a positive average treatment effect (the object about which the weak null asks questions) is compatible with situations in
which some cities have turnout decreased because of the treatment assignment:

news.exp$faker1-news.exp$faker0

[1] -1.73 -10.20 29.75 -20.32 10.24 21.80 -21.09 22.39

10. What if we hypothesized, in Fisher’s framework, that the treatment effect was 2 percentage points of turnout for each and every
unit. What does an average effect of 2 points mean? List two different sets of unit-level observed outcomes which would produce
an average difference of means of 2 points from this experiment. Hint: I did something like this to simplify, but you can feel free
to setup this problem however you’d like.

fakeR1<-c(2,3,3,3,6,7,7,7)

fakeZ<-rep(c(1,0),each=4)

diff(tapply(fakeR1,fakeZ,mean))

We could get an average of 2 in many many many ways here. One way would be this pattern of individual level effects:

##One positive effect and 3 negative effects

fakeR1<-c(33,5,5,5,10,10,10,10)

fakeZ<-rep(c(1,0),each=4)

diff(tapply(fakeR1,fakeZ,mean))

1

2

##A constant, additive effect

fakeR1<-c(12,4,4,4,10,2,2,2)

diff(tapply(fakeR1,fakeZ,mean))

1

2

11. So, notice another difference between Neyman and Fisher here. Neyman’s emphasis was on estimating an average causal effect
(so, unbiasedness of an estimator is important). Fisher’s emphasis was on testing a hypothesis about a unit specific causal effect.
Now, for paired or stratified data, the ATE is a little different (but still pretty simple): we just calculate the ATE within stratum and
then take the weighted average across the strata (often we weight by the the number of treated units in the stratum or perhaps just
the total size of the stratum or trying to take into account the ratio of treated to controls in the stratum).

For example, we might write:
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ˆ̄τb = (1/mb)
nb∑
i=1

ZiYi − (1/(nb − mb))
nb∑
i=1

(1 − Zi)Yi

and

ˆ̄τ = (1/B)
B∑

b=i

ˆ̄τb

The idea of weighting each block/strata equally is appropriate for our current paired situation and is simple to look at. Although
there is reason to weight them unequally when we have unequal numbers of observations in the strata and when the ratios of treated
to control units varies by stratum.

Let’s estimate the average treatment effect taking the pairing into account. Also show that we can get the same estimate from a
least squares model with indicator variables for the pairs. Hint: Here is a start. Make sure you understand the code.

thepairs.list<-split(news.exp[,c("z","r")],news.exp$s)

taub<-sapply(thepairs.list,function(dat){ mean(dat$r[dat$z==1]) - mean(dat$r[dat$z==0]) })

news.exp$sF<-factor(news.exp$s) ##useful for lm

lm1<-lm(r~z+sF,data=news.exp)

12. Now we have a linear model object (that you produced in the last question) and so it is hard to resist statistical inference using what
you know about linear models.

est.sigma<-sum(resid(lm1)^2)/lm1$df

xtxinv<- solve(t(model.matrix(lm1)) %*% model.matrix(lm1)) ##model.matrix(lm1) just gives me an X matrix easily

varblm1<-est.sigma * xtxinv

seblm1<-sqrt(diag(varblm1))

rbind(b=coef(lm1),seb=seblm1) ##compare to summary(lm1)$coef

coef(lm1)["z"]+c(-1,1)*qt(p=.975,df=lm1$df)*seblm1["z"] ##cf confint(lm1,parm="z")

Ack! I just accidentally calculated a confidence interval and displayed a standard error using the default OLS variance formula
Varβ̂ = σ(XT X)−1. What do we have to believe to feel like they reflect something useful about the ways that the ATE might vary
from randomization to randomization?

Here we are back to your first year of stats: we have to believe that the observations are iid and we need a large sample story
for the Normal distribution with unknown variance (which we estimate and thus arrive at a t-distribution). We have to also
believe that the effect is the same across the pairs.

A small dilemma here is that we probably created heteroskedasticity via our treatment (i.e. if the treatment mattered, we
imagine that it would not necessarily only matter for the mean but also for the variance of the outcome). A larger dilemma
is that the value of the treatment vector are not really independent of each other: we require one and only one treatment
within a pair, once one unit is treated, the other must be control. That is, most experiments do not use simple coin flips
to assign treatment. The Freedman readings address these points at length — suggesting that while our little regression
without pairs might be ok, once we have pair indicators we might be in trouble if we use the OLS assumptions for statistical
inference about randomized data.

13. Right, we have the whole set of OLS assumptions to think about here. So, we might not want to just use plain old OLS for statistical
inference on randomized experiments that are this small. Specifically, using the same kind of tricks by which we showed that the
sample difference of means was an unbiased estimator of the average causal effect, we can show the following:

Var(dpairs) =
(

1
B

)2 B∑
b=1

nb

mb(nb − mb)

nb∑
i=1

(Yib − ȳb)2

nb − 1

=

(
2
B2

) B∑
b=1

2∑
i=1

(Yib − ȳb)2. (6)

If we calculate this we get a different standard error than the one arising from least squares.
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## see https://github.com/markmfredrickson/RItools/tree/randomization-distribution

## for the next few lines (commented out because only need to run once)

##install.packages("devtools")

## library("devtools")

## .libPaths("~/R/library/")

## install_github("RItools", user = "markmfredrickson", ref = "randomization-distribution",

## args="--no-multiarch")

library("RItools", lib.loc = "~/R/library")

se.ate.paired<-sqrt((2/4^2)*sum(sapply(thepairs.list,function(dat){ with(dat, sum((r-mean(r))^2) )})))

##compare to what is reported by xBalance as the sd of the null rand dist:

xb1<-xBalance(z~r,strata=list(s=~s),data=news.exp,report="all")

xb1$results[,c("adj.diff","adj.diff.null.sd"),]

So, what can we do? It would be nice to use our friend least squares to estimate average treatment effects and also for statistical
inference about these estimates even in smallish size samples. What ideas might you have to use least squares to estimate the ATE
but make some modification to improve our standard error estimation?

So, “robust” standard errors come immediately to mind. Or just using the variance calculation derived by Neyman/etc..
Bootstrapping would not be a good idea since (1) we do not know how these cities were sampled from larger population and
(2) even if we did, sampling with replacement with our small dataset would seriously inflate the standard errors because of
multicollinearity. If we did know how the outcome was generated (i.e. Poisson, Gamma Mixture of Poissons [i.e. Negative
Binomial], Gaussian, etc..) then we could use maximum likelihood here (and there are some interesting approaches to small
sample statistical inference with MLE using higher order asymptotics which could help). Yet, the iid assumption which most
MLE derivations require (i.e. represent the likelihood function as a product and thus to get a log likelihood, etc..) again
doesn’t fly, and the uncertainty here is mainly in the treatment assignment (i.e. uncertainty in exactly which city would get
treatment) rather than uncertainty in the distribution of the outcome.

14. Here is one idea, use “robust” standard errors. (Specifically Lin (2011) recently shows that the HC2 version of robust standard
errors are equivalent to the ones that Neyman proposed in 1923).

HC2 = (XT X)−1diag
 e2

i

1 − h2
ii

 X(XT X)−1

where hii = xi(XT X)−1xi , h is often called the “hat matrix” it captures the distance an individual unit is from all of the others (the
centroid of all of the X’s). That is, it allows for some sense that particularly distant points might overly influence the SE calculation.

library(car) ## we’ll ask Fox’s code to do this for us.

lm1HC0<-hccm(lm1,type="hc0")

lm1HC1<-hccm(lm1,type="hc1")

lm1HC2<-hccm(lm1,type="hc2")

lm1HC3<-hccm(lm1,type="hc3")

lm1HC4<-hccm(lm1,type="hc4")

##summary(lm1)$coef

round(cbind(pairedse=se.ate.paired,

ols.iid=seblm1["z"], ##sqrt(diag(vcov(lm1))),

hc0=sqrt(diag(lm1HC0))["z"],

hc1=sqrt(diag(lm1HC1))["z"],

hc2=sqrt(diag(lm1HC2))["z"],

hc3=sqrt(diag(lm1HC3))["z"],

hc4=sqrt(diag(lm1HC4))["z"]),4) #$

Now we have lots of possibilities here and each might lead to a different confidence interval. How should we adjudicate among
them? Here are two ideas:

(1) Use simulation: What is the standard deviation of mean differences across randomizations really? [this is what the standard
error means]. Explain the following code (perhaps you can rewrite the sd() part more cleanly.

## these next two lines create Omega using as yet undocumented functions in the

## development branch of RItools

Omega.maker <- simpleRandomSampler(z=news.exp$z, b=news.exp$s)

Omega<-Omega.maker(100)$samples ## notice that it tops out at 16 because that is the max

## What is happening here?

sd(apply(Omega,2,function(thez){

coef(lm(r~thez+sF,data=news.exp))["thez"]

}))

15. Another idea (2) is to assess the operating characteristics of statistical inferences made with the different procedures. Specifically,
assess the Type I error rate or “coverage”. First, explain what the Type I error rate is and why we’d care about it.
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The Type I error rate is the “size” of the test — it is the actual proportion of rejections of a true null made by a given test.
I highly encourage you to read those parts of Rosenbaum’s glossary.

16. Here is the code which produces a two-sided p-value for the test of the weak null (and the strict null is here in comparison) for
every way that we could assign treatment here. That is, we take each of the 16 ways to assign treatment given the paired design
temporarily as the “observed” assignment and compare it to the other 16 to get a p-value. By doing this we break the relationship
between z and y so we should mostly not reject the null. In fact, if these tests “keep their promises” (in Rosenbaum’s language),
what should we expect from these lists of p-values?

simp.lm.p.value<-function(lmobj,se,varname="z"){

2*(min(pt(coef(lmobj)[varname]/se,df=lmobj$df),1-pt(coef(lmobj)[varname]/se,df=lmobj$df) ))

}

##test it: simp.lm.p.value(lm1,seblm1["z"],"z") versus summary(lm1)$coef["z",]

library(parallel) ## for RItest

get.many.ps<-function(az){

thelm<-lm(r~az+sF,data=news.exp)

olsse<-sqrt(diag(vcov(thelm)))["az"]

hc2se<-sqrt(diag(hccm(thelm,type="hc2")))["az"]

ols.p<-simp.lm.p.value(thelm,olsse,"az")

hc2.p<-simp.lm.p.value(thelm,hc2se,"az")

thexb<-xBalance(az~r,strata=list(s=~s),data=data.frame(az=az,news.exp),report="p.values")

thexb.p<-thexb$yesults[,"p",] ##uses Normal rather than t because we know the population (from Neyman)

thepRD<-RItest(y=news.exp$r,

z=az,

test.stat=mean.difference,

sampler=simpleRandomSampler(z=news.exp$z,b=news.exp$s))

thepRD.p<-thepRD[,"p.value"]

return(c(ols=ols.p,hc2=hc2.p,xb=thexb.p,pRD=thepRD.p))

}

many.ps<-apply(Omega,2,function(pretend.z){

get.many.ps(pretend.z)

})

We should see 5% of the tests have p-values less than or equal to .05, etc... (same for every α). Or, the p-values should be
uniformly distributed.

17. Here are a couple of ways to look at the results of our simulation:
par(mfrow=c(2,2))

for(i in row.names(many.ps)){

plot(ecdf(many.ps[i,]),main=i)

abline(0,1)

}
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alphas <- seq(.0625,.25,.025)

theecdfs<-apply(many.ps,1,ecdf)

cbind(alphas,sapply(theecdfs,function(thefn){ thefn(v=alphas) }))

alphas ols hc2 pRD

[1,] 0.0625 0.125 0.125 0.000

[2,] 0.0875 0.125 0.125 0.000

[3,] 0.1125 0.125 0.125 0.000

[4,] 0.1375 0.125 0.125 0.125

[5,] 0.1625 0.125 0.125 0.125

[6,] 0.1875 0.125 0.125 0.125

[7,] 0.2125 0.125 0.125 0.125

[8,] 0.2375 0.250 0.250 0.125

What do you think? On this particular randomized experiment, which approach to statistical is least likely to mislead us? Are there
other approaches that we’ve missed?

So, the Fisher randomization approach clearly fulfills its promise: the p-values are uniformly distributed.

None of the other approaches is very good in this particular dataset: None are terrible, and we imagine that they all might
become much better as the sample size increases. However, the combination of appeals to Normal and t-distributions do not
make hc2 particularly better than ols or xb (etc.) Of course, the pRD approach is testing a different null, here, too.

18. Finally, let us come back to a big conceptual and scientific issue (using the language from the Adcock and Collier (2001) reading):
What is the background concept of “causal effect” or “causal relationship” that we care about? How do either of Fisher or Neyman’s
systematized concepts help us? Are there are other scientifically useful ways to to think about what a causal relationship might
mean? If so, how might you link those ways to observation? [No need to invent a whole new framework for statistical inference
here, just to ask yourself if all science should always care about averages, or when might averages not be something we care about
— and/or alternatively, when would specifying unit-level hypotheses be a un-useful (or useful).]
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