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Abstract

Every two years in the US, 435 congressional elections take place that scholars study using
data from the National Election Studies (NES) survey of the American electorate. With a focus
on sampling, this article explores two issues: (1) How best to design a national election study
if the aim is to understand voting behavior within and across subnational contexts; and (2)
How, by comparison, the existing NES surveys have been designed. Although our arguments
specifically address how one should sample individuals and congressional districts in the US,
our conclusions apply to any situation where one is sampling micro-level units nested within
diverse and influential macro-level contexts. 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Data from national election studies are often used to study voting behavior in
subnational electoral districts. In the United States, the National Election Studies
(NES) surveys the American electorate every two years, collecting data relevant to
explaining election outcomes at the national (presidential) and subnational
(congressional) level. Although national survey data are valuable for studying each
type of election, the fact that congressional elections are inherently subnational
events has implications for survey design. In any given election year, 435 different
contests take place across the country, in districts with varying characteristics, with
varying pairs of candidates running varying election campaigns. Hence, the questions
we address in this paper arise: How should one design a national election study in
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order to best understand these diverse subnational contests? And, how, by compari-
son, have the American National Election Studies been designed?

These are large questions, and, if left unfocused, larger than we can confront in
this paper. We focus, therefore, on one crucial aspect of the design of a national
survey: the sample design. Although sampling considerations are important to the
design of any survey, they are particularly important in the kind of case we have at
hand—where individuals from all across the nation are surveyed concerning the parti-
cular elections taking place within the districts in which they reside. In order to
analyze these elections fruitfully, scholars must link micro-level survey data to
macro-level data on attributes of the districts, the candidates, and the campaigns. As
we will demonstrate, the effectiveness of the resulting analysis depends, to an
important extent, on how the survey sample is designed.

In what follows we develop our arguments with respect to the problem of sampling
citizens within and across congressional districts in the United States. The sampling
issues we confront, however, are much more general than this. They arise any time
that one is sampling micro-level units nested within diverse and influential macro-
level contexts. They arise, for example, for researchers designing survey research
on voting in US presidential elections, in that presidential campaigns are waged very
differently across the 50 US states (Shaw, 1999a,b). If that state-by-state variation
influences how voters make their choices, then researchers must confront how to
sample voters within and across states. In this case, as with the case of congressional
electoral research that we address in detail, below, sampling designs constrain what
one will be able to learn. We first elaborate this point through example, by consider-
ing two contrasting survey designs.

2. Two contrasting designs

Imagine a design where 3000 eligible voters are selected at random within a single
congressional district (CD), which, itself, is selected at random from within the 435
congressional districts in the US. With these data, we could study how various indi-
vidual-level explanatory variables affect a dependent variable like vote choice in this
election, although we could not draw conclusions from such findings about con-
gressional elections in general. More importantly, we could not study how district,
candidate, or campaign characteristics influence how citizens vote, since the study
design generates no variation on such variables. For the same reason, we could not
study how CD-level characteristics interact with individual-level characteristics in
influencing the vote. As a consequence, our model of the vote will be incomplete,
and hence inadequate for explaining the election outcome even within the con-
gressional district we studied. In this design, any effect of CD-level variables is
operating in a wholly unobserved fashion. Even with data on 3000 eligible voters,
we could not fully explain why people voted, why they voted the way they did, or
why candidate A ended up beating candidate B.1

1 To illustrate, imagine that our sampled CD involves a highly contested race with a Democratic
incumbent in a district where voters are no more Democratic than Republican in their party identification.
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By contrast, imagine a design in which 100 congressional districts are first sampled
at random, and then within each CD 30 eligible voters are randomly selected.2 Like
the first design, we could use the sample of 3000 respondents to evaluate the effects
of individual-level characteristics like partisan identification. Since this design builds
in variation at the CD-level, we could also study how district, campaign, and candi-
date characteristics influence the vote (assuming we gather the requisite data at the
CD-level). For the same reason, we could study the interaction of CD- and individ-
ual-level explanatory variables, asking, for example, whether the effect of party
identification depends upon the nature of the campaign. Since respondents are
sampled at random within districts and the number per district is relatively large
(n=30), we could also aggregate responses within districts to generate contextual
independent variables (e.g., “climate of opinion” variables), or could link the aggre-
gated survey findings to data on members of Congress, as did Miller and Stokes
(1963) in their study of representation. We could even draw district-level conclusions
about the behavior of voters or about election outcomes, although the within-district
n of 30 is limiting in this respect. However, since both districts and respondents are
sampled at random, we could pursue the same kind of exercise for particular district
types. For example, we could demonstrate the extent to which the outcome of open-
seat contests hinged on candidate quality as opposed to the partisanship of the dis-
trict’s voters, employing the “Level Importance” technique described by Achen
(1982).3 Since the CDs are sampled at random within the nation, we could draw
further conclusions from the data about the overall pattern of congressional election
results in the nation as a whole.

These two designs differ in the number of CDs sampled (which we will refer to
as “J” ) and the number of respondents per district (n). The first involves a simple
random sample (n=3000, within one CD), whereas the second involves a two-stage,
cluster sample; first a sample of CDs (clusters) is selected (J=100), and then individ-
uals are chosen within CDs (n=30). Both designs produce an overall sample (N) of
3000 eligible voters. Neither design involves stratification.

Let’s say that the Democrat wins by a narrow margin in part because of the effect of incumbency—i.e.,
because voters are more likely to cast their votes for an incumbent than a non-incumbent, ceteris paribus.
We cannot estimate this effect, since we only observe one race, and hence our explanation of the vote
will be incomplete. Still, since there is no variance on this or any other CD-level variable in our study,
our estimates of the effects of individual-level variables like party identification are not biased; they are
simply not generalizable. For example, the effect of party identification in this district might be weaker
than the effect of party identification in races with open seats, and we would not know it.

2 This is a two-stage cluster sample design. Assuming that each CD has the same number of eligible
voters, it generates an equal probability sample of eligible voters in the US.

3 Sampling at random within a given CD ensures that sample findings can be generalized to the popu-
lation of eligible voters within that CD. Sampling CDs at random ensures that the sample findings concern-
ing open-seat CDs can be generalized to the population of open-seat CDs. Taken together, this means
that the whole set of findings can be generalized to the population of eligible voters living within open-
seat CDs. If we had random sampling within CDs but a purposive sample of open-seat CDs, we could
only generalize results to the population of eligible voters within the sampled CDs. If we had random
sampling of CDs but a purposive sample of eligible voters within CDs, then, strictly speaking, we would
not be able to generalize any findings concerning individuals at all.
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Stratification in the first design would involve sorting the population of eligible
voters into categories on one or more stratifying variables before sampling. Within
each stratum, respondents would be sampled in proportion to their population fre-
quency if one was striving to achieve an equal probability design. This procedure
would ensure that the sample percentage of respondents within a stratum equaled
the population percentage, and would increase the power4 of statistical tests involving
dependent variables that were correlated with the stratifying variable(s) (Kish, 1965;
Judd et al., 1991). Stratifying also enables one to over-sample within strata—to sam-
ple disproportionately so as to increase the representation of a group that otherwise
would be represented in the sample in small numbers. In the second design, one
could repeat such a procedure at each sampling stage—stratifying the population of
CDs before selecting 100 of them at the first stage, and stratifying eligible voters
within CDs before selecting 30 of them (within each CD) at the second stage. In
important ways that we describe later, stratification at the macro-level can be one
of the most crucial aspects of the sample design.

In general, and as these examples have suggested, our ability to use national survey
data to understand congressional elections depends on how both districts and individ-
uals are sampled within the study. In order to explicate this point further, and to
arrive at general guidelines for sample design, we must consider how the data on
individuals and on districts are gathered and analyzed.

3. Multi-level data and analysis

As illustrated by our examples as well as past research (e.g., Jacobson, 1997;
Brown and Woods, 1992; McPhee and Glaser, 1962), studies of congressional elec-
tions are likely to require data on eligible voters, the congressional districts, the
campaigns run in those districts, and the candidates contesting the election. This
means that the analysis will be based on data characterizing both micro- and macro-
level units, integrated into one multi-level dataset. The multi-level structure of the
data creates special problems for conventional data analysis.

Below, we briefly discuss the roles played by micro- and macro-level variables
in analyses of voting behavior in congressional elections. We then describe different
ways of analyzing the integrated, multi-level data: (1) Aggregating all data to the
macro-level, (2) treating all data as if it were gathered at the micro-level, and (3)
analyzing the micro- and macro-level data simultaneously while also taking into
account which data are gathered on which units—i.e., analyzing the data through
multi-level modeling. This sets up our subsequent discussion of sample design and
statistical efficiency, which assumes that the data will be analyzed through multi-
level modeling techniques.

Survey data provide individual-level information on the dependent variable—turn-

4 The power of a test refers to the probability that one will reject the null hypothesis when the null
hypothesis is false (specifically, when a particular alternative hypothesis is true).
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out, vote choice, information about the candidates, and the like. Survey data also
provide information on individual characteristics that operate as independent vari-
ables, like partisan identification, group characteristics, and issue positions. And sur-
vey data provide information on individual characteristics that either mediate or mod-
erate the effects of contextual characteristics on outcomes. For example, a
respondent’s level of political awareness may influence how he or she responds to
the messages of the campaign (Zaller, 1992).

Information on congressional district-level characteristics may be drawn from
many sources. Census data, official government records, campaign documents, and
mass media sources all contain relevant data. Even survey responses, if aggregated
to the CD-level, can provide useful data on candidates or campaigns. One could, for
example, use the within-district mean placement of a candidate on a liberal-conserva-
tive scale as an index of the candidate’s ideology (although for incumbents, of course,
other measures of this are readily available, such as indices based on votes cast in
Congress). Such a procedure treats survey respondents as informants.5

The effects of CD-level variables can be thought of in two ways. First, the attri-
butes of districts, candidates, or campaigns can influence vote choices and electoral
outcomes. This influence might be either direct, or indirect—i.e., mediated by other
CD-level or individual-level characteristics. Second, they can identify contexts which
influence how other variables (individual- or CD-level) influence the vote and elec-
tion outcome. In other words, they can identify contexts across which the explanatory
model varies.6

There are different ways to represent the relationships between CD-level variables
(as independent) and individual-level variables (as both independent and dependent).
One way would be to aggregate the individual-level responses to the CD-level, by
averaging across individuals within each district, and then to regress an aggregated
dependent variable on relevant CD-level variables and on other aggregated individ-
ual-level variables. A simple version of this model is depicted below:

Ȳ. j�b0�b1X̄.j�b2Zj�Ej (1)

In Eq. (1), Ȳ. j is the mean of the individual-level dependent variable within each
CD, X̄.j is the mean of a relevant individual-level variable within each CD, and Zj

is an attribute of each district, measured at the district level (i.e., not using survey

5 This requires that respondents be randomly sampled within CDs, and for a reliable measure, that the
within-district n be relatively large.

6 If one expects the explanatory model to vary across CDs, then one would build interactions into the
model. When those interactions involve an individual-level variable in addition to a CD-level variable
they are usually called “cross-level interactions,” a term we employ below. Cross-level interactions can
be used to represent how attributes of districts shape the influence exerted by some individual-level
independent variable (e.g., the notion that in an open-seat contest party identification has more effect on
the vote than it has in races involving an incumbent), but can also be used to represent how attributes
of individuals shape the influence exerted by some district-level independent variable (e.g., the notion that
politically unsophisticated voters are more likely to be affected by negative campaigning than politically
sophisticated voters). See Fisher (1988) for an excellent discussion of how the same interaction term can
be used to estimate coefficients from very different models.
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data). In such a regression, one would be able to say something about how, say,
mean turnout levels vary depending on whether or not an incumbent is running. One
problem with this method is that there is no guarantee that the relationship found
using aggregated individual-level variables will be the same as the relationship found
when using the disaggregated individual-level variables. This is the cross-level infer-
ence problem (Achen and Shively, 1995). Related, this model is incapable of rep-
resenting cross-level interactions, where the effects of micro-level variables vary
across macro-level contexts, or vice-versa. Another problem is that, since the typical
survey includes many more individuals than districts, the degrees of freedom avail-
able for hypothesis testing are often drastically reduced via such aggregation. If the
survey were using the second hypothetical design we described above, this aggregate
regression would have 100 degrees of freedom, despite the availability of information
about 3000 individuals.

Alternatively, one might be tempted to model all of the data at the individual
level, pretending, in effect, that we have 3000 observations at the CD-level rather
than the true number, 100 (again, alluding to the second design example we presented
above). Eq. (2) presents such a model. In this case, we’ve added a subscript of i to
the CD-level variable Z.

Yij�b0�b1Xij�b2Zij�Eij (2)

One problem with this method of modeling the data is that we do not have N=J×n
(number of districts×number of individuals per district) independent values of Z or
of X. Rather, we only observe J independent values of Z, and somewhere between
J and N independent values of X. OLS, in this case, would not estimate the correct
standard errors.

The number of independent observations obtained in a multi-level design is called
the “effective N.” In a simple two-stage design like we described in our earlier
example, the effective N of macro-level units is J, the number of such units randomly
sampled at the first stage.7 The effective N of micro-level units is more complicated.
Because individuals are nested within districts, the values that individual-level vari-
ables take on are not likely to be independent within districts. Put another way, we
would expect a sample of individuals chosen at random within a district to be more
similar to each other than a sample of individuals chosen at random from within the
population at large. The most common way to gauge this homogeneity is to summar-

7 If a multi-stage sample design is used where district selection occurs at a later stage, CDs will be
clustered within higher-level units and thus the effective N of CDs will be less than the total number
represented in the sample. Similarly, as long as the first stage involves sampling areas that contain more
than one CD, then even if the CD is not a sampling unit at later stages the effective N of CDs will be
less than the number of CDs that fall into the sample. As we describe later, this is true of the sample
designs NES has used, with the exceptions of the 1978 and 1980 studies. To estimate the effective N in
such cases, one would follow a procedure comparable to the one used for estimating the effective N of
micro-level units, which we describe next.
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ize it using a statistic known as “ rho” , the “ intraclass correlation coefficient” (r).8

The coefficient r ranges from 0 to 1, where r=0 corresponds to the case where there
is no tendency for individuals nested within macro-level units to be similar to one
another, and r=1 corresponds to the case where all individuals nested within macro-
level units are identical to one another.9 Kish (1965) used this measure of homogen-
eity within clusters to calculate the effective N of observations for a given individual-
level variable, as depicted below (for the equal cluster size case).

effective N�
N

1+(n−1)r
�

Jn
1+(n−1)r

(4)

Eq. (4) shows that, as the homogeneity within clusters (r) increases, then the effec-
tive N decreases.10 Further, when holding the total sample size (N) constant, as the
cluster size (n) increases, then the effective N also decreases. Since N=J×n, what
this means is that as n increases and J decreases—i.e., when the degree of clustering
in the design increases—the effective N of micro-level units decreases.

Despite the fact that we can identify the effective N for each of the variables in
any given model, the fact that the effective Ns vary across the variables still poses
a problem for OLS.11 The most appropriate model for estimating effects with nested
data is the hierarchical or multi-level model. The multi-level model was developed
to represent how the behavior of individuals is influenced by their own (micro-level)
characteristics as well as the characteristics of the macro-level contexts in which
they are nested (CDs, in our case). It enables one to simultaneously estimate the
effects of micro-level variables, macro-level variables, and interaction variables,
including cross-level interactions, all while taking into account the multi-level nature
of the data. In Appendix A, we provide a very brief description of the model. Jones
and Steenbergen (1997) provide a very useful overview, illustrating their discussion
with examples from political science. Further information can be found in Bryk and
Raudenbush (1992), Goldstein (1999), Kreft and De Leeuw (1998), Longford (1993),
Pinheiro and Bates (2000), and Snijders and Bosker (1999).

8 Kish (1965, p. 161) introduced this statistic and called it “ roh.” Most other authors have depicted
“ rho” by the Greek letter r, which is the symbol Kish assigned to this statistic when using it in mathemat-
ical formulas. Kish chose “ roh” because it is an acronym for “ rate of homogeneity.”

9 Eq. (3) shows one way to depict the formula for r.

r�
variance between macro−units

total variance
�
t2

t2+s2. (3)

In this formula, t2 represents the between-group variance, and s2 represents the within-group variance. As
this formula suggests, r indicates the proportion of the total variance in some variable that is attributable to
the macro-level unit. There are numerous methods of estimating r. Later in this paper we use the so-

called “ANOVA method” where r̂=
(F−1)J/n

1+(F−1)J/n
(Snijders and Bosker, 1999).

10 When r=0 the effective N is simply N, and when r=1 (i.e., all individuals nested within CDs take
on the same value) the effective N is J.

11 OLS is no longer BLUE. What is more, OLS yields biased coefficient estimates if the model estimated
involves cross-level interactions (see, for example, Kreft and De Leeuw, 1998, especially Chap. 2).
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For our purposes, what is important is how various sample design decisions influ-
ence statistical efficiency and the power of hypothesis tests when multi-level models
are estimated. We take up this issue next.

4. Sample design and efficiency in the estimation of macro-level effects

4.1. Number of CDs (J) and respondents per CD (n)

As our previous discussion has implied, all other things held constant, statistical
efficiency in estimating macro-level effects is enhanced by increasing the number
of macro-level units—in our case, CDs. This is simply a matter of the effective N
of macro-level units. In any analysis involving CD-level explanatory variables, the
degrees of freedom available for estimating CD-level effects is determined by taking
into account the number of CDs, rather than the number of individuals, that fall into
the sample. Hence, the efficiency of statistical estimates (and the power of hypothesis
tests) is strongly influenced by the number of CDs sampled.

A relevant general remark is that the sample size at the highest level is usually
the most restrictive element in the design. For example, a two-level design with
10 groups, i.e. a macro-level sample size of 10, is at least as uncomfortable as a
single-level design with a sample size of 10. Requirements on the sample size at
the highest level, for a hierarchical linear model with q explanatory variables at
this level, are at least as stringent as requirements on the sample size in a single
level design with q explanatory variables (Snijders and Bosker, 1999, p. 140).

At the same time, when one is estimating multi-level models, then both the number
of macro-level units (J) and the number of micro-level units nested within them (n),
and, hence, the total number of micro-level units (N), affects the efficiency of one’s
estimates, as does r (Kreft and De Leeuw, 1998; Mok, 1995; Snijders and Bosker,
1999).12 To see this, consider Fig. 1, which uses an algorithm developed by Rauden-
bush (1997) to show how the power of statistical tests concerning the effects of CD-
level variables is influenced by J, n, and r.13

In this simulation, we stipulate a very simple model, in which one macro-level
variable is seen as affecting a micro-level dependent variable. We assume that the

12 The estimators of the coefficients in multi-level models are consistent, but not unbiased. As Mok
(1995) has demonstrated, increasing J also diminishes the degree of bias in the coefficient estimates. “…
consistent with advice given in the classical literature on cluster sampling designs, if resources were
available for a sample size n, comprising J schools with I students from each school, then less bias and
more efficiency would be expected from sample designs involving more schools (large J), and fewer
students per schools (small I) than sample designs involving fewer schools (small J), and more students
per school (large I)” (Mok, 1995, p. 6).

13 Professor Raudenbush sent us the SAS code to implement his algorithm, and we modified it for use
in Splus.
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Note: � � .05, effect size � .2, 4 �J�200, 2 �n� 200.

Fig. 1. Power of tests for macro-level effects.

true effect, gauged in terms of a standardized regression coefficient, is 0.1.14 The
two panels show how increasing J and n increase the power of a hypothesis test
concerning the effect of the macro-level variable. The left panel portrays the case
where r=0.05 (i.e. the case where individuals are not very homogeneous within
districts) and the right panel portrays the case where r=0.25 (i.e. the case where
individuals are quite homogeneous within districts).15 Thus, in this simulation, we
are allowing three aspects of the design to vary: the number of macro-units (J), the
number of micro-units per macro-unit (n), and the amount of homogeneity among
micro-units that are nested within macro-level units (r). The results in Fig. 1 show
that r plays an important role in determining the power of tests concerning the
macro-level variable; the higher the r, the lower the power. Further, increasing both
J and n—and, hence, N—also increases power. More importantly, however, power
is much more dramatically enhanced by increasing J than by increasing n.16

To further illustrate this tradeoff, we also used a simulation to estimate the standard
errors associated with coefficients in a more complex multi-level model. The model
called for one micro-level dependent variable to be regressed on (a) one micro-level
independent variable, (b) two CD-level independent variables, and (c) two cross-

14 The program actually requires us to stipulate an “effect size” . We stipulated an effect size of 0.2,
which corresponds to a standardized regression (correlation) coefficient of 0.1 (Snijders and Bosker, 1999,
p. 147).

15 Estimated values of r calculated using NES data are typically in the 0.05 to 0.3 range. See below,
Table 6.

16 As Fig. 1 also shows, the effect on power (in testing for macro-level effects) of increasing the within-
district sample size, n, depends on whether r is small or large. If r is small (0.05 in the simulation),
then increasing the n is somewhat helpful. If r is large (0.25 in the simulation), then increasing the n is
not helpful. Similarly, a high r limits the improvement in power produced by increasing J.
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level interactions—i.e., the interactions between each CD-level variable and the
micro-level independent variable. For example, one might think of this model as
regressing a summary index of knowledge about the candidates on the respondent’s
level of political awareness, whether or not the election involved an open-seat,
whether or not the race was competitive, and the interaction between these CD-level
characteristics and the respondent’s political awareness level.

This simulation holds the total number of micro-level cases (N) constant, while
varying J and n. Hence, as J is increased, n is necessarily decreased, and vice-versa.
Fig. 2 shows how the relative sizes of J and n affect the standard errors of the
independent variables.17 In this figure, the x-axis shows the number of congressional

Note: N is held constant in this simulation, so that as the number of congressional districts increases (J), the within-
district n decreases. See text for further details.

Fig. 2. Simulated standard errors of micro-level, macro-level, and cross-level effect estimates.

17 We used the program PINT (Power in Two-Level Designs) developed by Tom Snijders and Roel
Bosker (Snijders and Bosker, 1993). We defined the macro-level variables as dichotomous (each scored
0 and 1), with means of 0.5 and variances of 0.25, and as uncorrelated with each other. We defined both
independent and dependent micro-level variables as standardized (mean 0 and variance 1), and set the
correlation between the macro-level and micro-level explanatory variables to 0. We set N=800, the vari-
ance of the residuals at the micro-level to 0.8, and the variance/covariance matrix of the random coef-

ficients (intercept and slope) to �0.09 −0.01

−0.01 0.0075
�. Varying these specifications does not alter general con-

clusions about the tradeoff between J and n as depicted in Fig. 2, but it does matter to the details. In
particular, as the variation across electoral contexts in the slope and intercept of the individual-level
independent variable increases (i.e., as the main diagonals of the the matrix above increase), increasing
J at the expense of n becomes even more desirable.
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districts (J), leaving the number of cases sampled within each district (n) implicit.
As J increases, however, n is decreasing. As Fig. 2 shows, increasing J has an
enormous effect on the size of the standard errors associated with the macro-level
variables. Yet, in this simulation, and as a general matter, the gains (in terms of
smaller standard errors) diminish as J increases. The standard errors of the micro-
level variables, and of the cross-level interactions, also decrease as J increases, but
much less dramatically. This pattern reflects how the effective Ns are changing. For
the macro-level variables, the effective N is J. For the micro-level variables and
cross-level interactions, the effective N is changing as the clustering (as indexed by
n, given a fixed N) in the sample decreases.

The idea that particular characteristics of an electoral context shape how individ-
uals make their voting decisions often seems married to an intuition that one should
sample a very large number of individuals within particular electoral contexts. As
we have seen, however, this is generally not an optimal design strategy. It is much
more advantageous to the analyst if J is increased at the expense of n.

If one were especially interested in generalizing about a particular election, then
it would, of course, make sense to draw a large and representative sample within
the electoral district. That is why, for example, in order to facilitate the study of US
Presidential elections, the NES strives to draw a large and nationally representative
sample of eligible voters in the US.18 But scholars of congressional elections are not
typically interested in explaining the vote in a particular district, nor are they likely
to believe that the relevant model of the vote (or of other dependent variables) takes
a different form in each of the 435 CDs in the US. Rather, they are likely to believe
that the model varies in systematic and explicit ways depending on the “ type” of
CD—whether, for example, it involves an open seat or whether the race is highly
contested. As such, what is important for analysis is that the total number of individ-
uals falling into each type of CD is not unduly small.19 Having a large sample size
within each CD of a given type is not necessary—nor, as we have suggested, is it
generally desirable.

4.2. Variances of, and intercorrelations among, CD-level variables

Efficiency in the estimation of causal parameters is also a function of the variance
of the explanatory variables as well as the degree of intercorrelation between them
(or the linear dependency among a set of three or more). In particular, statistical
efficiency in the estimation of CD-level effects is enhanced when the variance on
CD-level variables is maximized and the intercorrelation between them is minimized.

These outcomes can be accomplished through stratification in the sampling pro-
cedure used to generate survey respondents. In a multi-stage sample design, the prob-

18 Even so, such a design is limited in that it lacks variation on explanatory variables that only vary
across nations, just as a large-scale study of one congressional district is limited by the absence of variation
in explanatory variables that distinguish districts, as we suggested earlier. The Comparative Study of
Electoral Systems project (CSES), of which the NES is a part, is a response to this kind of limitation.

19 We illustrate this point via simulation in the next section.
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ability that any one individual falls into the sample is the product of the probability
of selection at each stage. Thus, one can sample disproportionately within strata at
the first stage, so as to produce a desired distribution of macro-level units on the
stratifying variable, and then compensate at the second stage if one desires an equal
probability sample at the micro-level. If, for example, a certain type of CD has a
higher probability of selection into the sample than would be warranted by its preva-
lence in the population, then one would sample individuals within such a CD at a
lower rate to compensate.

Both of these points can be clarified through the use of an example. Our example
identifies two macro-level stratifying variables, both treated as dichotomous: whether
or not the race involves an open seat (Open), and whether or not the race is competi-
tive (Competitive). Although the general point illustrated by this example does not
depend on the particular stratifying variables we have chosen, it is worth briefly
addressing why we selected them nonetheless. There are two reasons.

First, they illustrate a general stratification principle: Select stratifying variables
that one expects to be important to explaining key dependent variables. The gains
from stratification, in terms of statistical efficiency, are a function of the extent to
which the stratifying variable is related to the dependent variable in question, whether
causally or spuriously (Kish, 1965). Research on congressional elections suggests
that incumbency and competitiveness—and variables correlated with these—are
important to understanding many phenomena of interest.20 Stratification is helpful
whether or not one samples macro-level units within strata in proportion to their
population frequency, and whether or not one eventually seeks an equal probability
sample of micro-level units. Yet, as we will show, stratifying on key macro-level
variables also enables one to employ disproportionate sampling so as to enhance
statistical efficiency in estimating macro-level effects.21

The second reason is practicality. We have data on these variables for con-
gressional districts in the US from 1948 to 1998. Later, we generate simulations and
present analyses that take advantage of this fact. Further, we have chosen variables
easily represented as dichotomies so as to keep the example simple. Thus, we avoided
other variables, such as the partisan balance in the district, that might be strong
candidates for a stratification scheme.

Suppose, then, that the population distribution of CDs and eligible voters across

20 The variable Competitive is meant to be an indicator of how closely contested the race is, and hence
an indicator of campaign intensity (Westlye, 1991). Later in this paper we gauge competitiveness by
using information on the electoral margin of victory. Since this kind of information is only available after
the election is over, it is not plausible to think of this as information that one could rely upon to make
stratification decisions. Margin of victory will, however, be correlated with other CD-level characteristics,
like the partisan balance in the district, that one should be able to measure in advance of the election.

21 If one samples proportionately within strata one can ensure that the percentage of sample units with
a given attribute equals the percentage of population units with that attribute. This is an important benefit
when random departures from such a result, which are to be expected without stratification, can seriously
hamper the analysis. We consider this benefit of stratification in alater section. In this section we focus
on the gains from disproportionate stratified sampling.
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Table 1
Population

Uncompetitive Competitive

Incumbent 5,000,000 individuals 1,000,000 individuals
500 CDs @10,000 each 100 CDs @10,000 each

Open-seat 1,000,000 individuals 1,000,000 individuals
100 CDs @10,000 each 100 CDs @10,000 each

Table 2
Sample design A, equal probability sample at each stage

Uncompetitive Competitive

Incumbent 50 CDs 10 CDs
n=10 n=10
N=500 N=100

Open Seat 10 CDs 10 CDs
n=10 n=10
N=100 N=100

the four cells defined by these two stratifying variables is as given in Table 1. (We
have used unrealistic numbers here—with a total of 8 million people scattered across
800 CDs—to keep things simple.) In design A, the population is stratified by the
two macro-level variables, Open and Competitive, CDs are sampled within strata in
proportion to their frequency in the population, and then an equal number of individ-
uals is chosen at random within each CD so as to generate an equal probability
sample of individuals. This is shown in Table 2. In design B, the population is again
stratified by the two CD-level variables, but now CDs are sampled disproportionately
in order to create an equal number of CDs in each of the four strata—i.e., a balanced
design at the CD-level. Then, an unequal number of individuals is chosen at random
within each CD so as to generate an equal probability sample of individuals. This
design is shown in Table 3.

Table 3
Sample design B, balanced at stage 1, equal probability at stage 2

Uncompetitive Competitive

Incumbent 20 CDs 20 CDs
n=25 n=5
N=500 N=100

Open Seat 20 CDs 20 CDs
n=5 n=5
N=100 N=100



248 L. Stoker, J. Bowers / Electoral Studies 21 (2002) 235–267

Both designs generate equal probability, representative samples of individuals, but
they differ in the sample of CDs that is drawn and the pattern of clustering within
CDs. In design A, only 20 of the 80 sampled CDs (25%) involve open-seat races,
and only 20 (25%) are classified as competitive; taken together, only 10 sampled
CDs (13%) involve competitive, open-seat races. In design B, by contrast, the distri-
bution of CDs is balanced on each of the stratifying variables, so that each of the
four cells contains 20 CDs (25%). Thinking only of the CD-level aspect of the design,
in design A the two stratifying variables have limited variances (0.1875 in each case)
and a moderate positive correlation (0.33). In design B, the two stratifying variables
have maximum variances (0.25 in each case) and zero intercorrelation.

If all individual-level data were aggregated, so the analysis was performed at the
CD-level (i.e., our sample size in each design is 80), and we simply regressed some
aggregated Y variable on Open and Competitive, design B would be superior in that
the two variables are uncorrelated and each have maximum variance, and hence the
standard errors associated with estimates of their effects would be smaller in design
B than in design A.22 At the same time, the number of individuals per CD is constant
(n=10) in design A but varies in design B (n=5 or 25). This means that design B
introduces heteroskedasticity—the mean of an aggregated Y variable would be esti-
mated with varying reliability across the CDs (Hanushek and Jackson, 1977, Chap.
6), and GLS rather than OLS must be used to estimate the model. More importantly,
this type of analysis throws away information, as we suggested before, and would
only be appropriate if one were interested in cause and effect relationships at the
CD-level, whereas most analysts studying subnational elections are interested in
explaining individual-level phenomena—or at least first explaining individual-level
phenomena and then using those findings to draw implications at the CD- or national-
level. This focus requires an analysis which retains individuals as the unit of analysis.

If we work with the data at the individual level, and think of the simplest possible
analysis—regressing an individual-level Y on the two contextual variables using
OLS—then the two designs are equivalent with respect to a number of things that
will influence the estimated standard errors: (1) the number of individuals (N=800),
(2) the variances of Open and Competitive (calculated with the individual-level data),
and (3) the correlation between Open and Competitive (calculated with the individ-
ual-level data). In such an analysis, the macro-level variables are treated as attributes
of individuals, such that all survey respondents living within, say, a district with an
open-seat race, would all be assigned the same value on Open. As far as OLS is
concerned, there is no difference between these macro-level and other, micro-level
variables. Hence, if we were estimating a simple regression model with OLS—which,
as we argued earlier, is not advisable—the features distinguishing design A and B
would not produce differences in their expected standard errors.

22 In a trivariate model, the standard error of each slope coefficient is a function of the variance in the
stochastic term, the sample size, the variance in the independent variable, and the correlation between
the pair of independent variables (Hanushek and Jackson, 1977). The standard error diminishes as the
variance in X increases and as the correlation between the independent variables diminishes
(approaches zero).
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This is useful to notice, we think, but the much more important point concerns
how the designs affect statistical efficiency when more appropriate models are esti-
mated—multi-level models which recognize that individuals are nested within
macro-level units.

One difference between the designs that is taken into account in multi-level mode-
ling involves the effective N that each provides, which varies because of the different
clustering entailed in each design. If we assume the intracluster correlation coef-
ficient, r, is 0.2, we obtain the effective Ns for each design that are depicted in Table
4.23 This analysis suggests that design A is better in terms of the overall effective
N, but that design B increases the effective N in the strata that are sparsely populated,
and produces something close to parity in the effective sample size across the
four cells.24

Overall, then, design A is advantaged by its larger effective N, but design B is
advantaged in that it maximizes variance in the macro-level variables and minimizes
their intercorrelation. As this simple example demonstrates, whether designing a sam-
ple that is balanced at the CD-level improves the efficiency of one’s estimates
depends upon whether the efficiency gain in terms of greater variance in the macro-
level variables and lower correlation between them outweighs the efficiency loss
incurred by the smaller effective sample size.

To illustrate this tradeoff further, and to add more specificity, we draw on the
results of simulations similar to the ones we described earlier, where we generated
standard errors associated with the coefficients of a multi-level model that included
one micro-level explanatory variable (Political Awareness), two macro-level
explanatory variables (Open and Competitive), and the two cross-level interactions.
Here, our simulations build in the characteristics of the data implied by design A

Table 4
Effective sample size

Actual N=800 Design A Design B

Effective N=287 Effective N=254

500 100 179 36 86 56
100 100 36 36 56 56

23 Actually, r is likely to be variable across these cells, not constant at 0.2, but we set that compli-
cation aside.

24 By increasing the effective N in the sparsely populated cells—e.g., the open seat CDs in our
example—design B facilitates subgroup analysis. There are effectively 112 individual-level cases in open
seat districts in design B compared to 72 in design A.
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and design B.25 Fig. 3 shows the results. As would be expected, the standard errors
on Political Awareness and the cross-level interactions tend to be higher under design
B than design A. This reflects design B’s smaller effective N. But design B yields
more precise estimates of the effects of the macro-level variables. In this case, the

Note: Entries depict the standard errors obtained under designs A and B across 1000 simulations. The dots mark the
median SE obtained, while the lines indicate the 5th and 95th percentiles. See text for further details.

Fig. 3. Simulated standard errors for design A versus design B.

25 Scholars have given close attention to power in two-level designs characterized by equal cluster
sizes, but have not given any attention to designs, like our design B, characterized by unequal cluster
sizes. Thus, while programs like PINT will estimate standard errors in designs with equal cluster sizes,
they do not recognize the possibility of unequal cluster sizes. Hence, we developed our own simulations,
using the lme package in Splus. For design A, N=800, J=80, n=10, Open and Competitive each have
means of 0.25, variances of 0.1875 and are correlated at 0.33. For design B, N=800, J=80, the ns are
either 5 or 25, and Open and Competitive have means of 0.5, maximum variances (0.25) and zero intercor-
relation. All other parameters were set to the values given in footnote 17. For each design, we ran 1000
simulations to generate our standard error estimates. The programs which generated the results in Figs.
3 and 4, can be found at http://socrates.berkeley.edu/~stoker/sampledesign.html. We are grateful to José
Pinheiro for helping us with the lme code.

jwbowers
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benefit from using design B is more substantial than the loss, although the advantage
is not overwhelming.

Fig. 4 shows how the standard errors vary across the two designs when the distri-
butions of Open and Competitive are even more skewed, as is typically the case—
with 7% of the races involving open-seats and 13% of the races competitive—and
when N and J are set at values more typical of NES studies (1800 cases distributed
across 120 CDs).26 When the population distribution of CD-level characteristics is
highly skewed, a sampling plan like design A, which simply reproduces that skewed
distribution in the sample, can leave analysts with little power for studying CD-level
effects. For example, the estimated standard error on Open is almost 0.15, which
means that a regression coefficient of magnitude 0.25 would fail to achieve statistical
significance at conventional levels.27 Design B, which balances the sample distri-
bution of each CD-level variable, substantially enhances power in this respect. That

Note: Entries depict the standard errors obtained under designs A and B across 1000 simulations. The dots mark the
median SE obtained, while the lines indicate the 5th and 95th percentiles. See text for further details.

Fig. 4. Simulated standard errors for design A versus design B: “ realistic” parameter values.

26 For design A, n=15 (1800/120). For design B, the average n=15, though the cluster sizes vary across
cells of the stratification matrix (from a minimum of 2 to a maximum of 50). For design A, the variance
of Open is 0.062, the variance of Competitive is 0.116, and their intercorrelation is 0.29. Design B again
assumes maximum variance in Open and Competitive (0.25) and no intercorrelation. Other parameters
were set to the values given in footnote 17.

27 Since the dependent variables are standardized in these simulations, this means that a true effect size
of 1 standard deviation would not be discernable.
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enhanced power, however, does not come without cost. One pays some price in
terms of the efficiency with which micro-level and cross-level effects are estimated.

Although a sample design that is balanced at the macro-level—like design B—
can yield more statistical power than one that is not, statistical efficiency is still
hampered by one constraint that is common to both designs: the production of an
equal probability sample of individuals. This is most easily illustrated by considering
the “ realistic” version of design B. The constraints built into that design—that
N=1800, J=120, the two macro-level variables be uncorrelated and of maximum
variance (i.e., that 30 CDs from each stratum are chosen), and the design produce
an equal probability sample of micro-level units—together imply that the sample has
dramatically different cluster sizes (n) across the CDs falling into the four cells of
the stratifying table. In the open/competitive cell, we have very few respondents per
CD (60 total respondents across 30 CDs, for an n of 2), but in the incumbent/non-
competitive cell, we have many respondents per CD (1500 total respondents across
30 CDs, for an n of 50). Greater efficiency gains could obviously be made if one
did not insist on drawing an equal probability sample at the micro-level. One could
then select fewer respondents within the incumbent/non-competitive CDs, which
would reduce the average cluster size (n), and then increase the overall number of
CDs sampled (J). One might also increase the n of respondents selected in open-
seat and competitive districts so as to facilitate subgroup analysis.28

In sum, sampling so as to produce greater balance in the distribution of macro-
level units across the stratifying variables—and thus, maximizing their variances
and minimizing their intercorrelation—can substantially enhance statistical power in
estimating macro-level effects. This is particularly the case when the stratifying vari-
ables identify relatively rare attributes—like the presence of an open seat, or exist-
ence of a highly competitive congressional race. One can achieve even greater gains
in efficiency if the design need not produce an equal-probability sample at the indi-
vidual level (which tends to produce large, inefficient clusters); resources that other-
wise must be devoted to increasing n can instead be directed toward increasing J.

5. Sample design and the NES

Although the sample design that the NES has employed over the years has varied,
it has typically involved a multi-stage procedure like the one described below for
1988.

The 1988 NES is based on a multi-stage area probability sample selected from
the survey research center’s (SRC) [1980] national sample design. Identification
of the 1988 NES sample respondents was conducted using a four stage sampling

28 Simulations comparing design A (equal probability at both stages) and design B (balanced at the
macro-level) with a design that is balanced at both levels demonstrate that the latter is far superior in
terms of statistical efficiency in estimating both macro-level effects and cross-level interaction effects.
See http://socrates.berkeley.edu/~stoker/sampledesign.html.
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process—a primary stage sampling of US standard metropolitan statistical areas
(SMSAs) and counties, followed by a second stage sampling of area segments, a
third stage sampling of housing units within sampled area segments and conclud-
ing with the random selection of a single respondent from selected housing units
(Miller, 1988).

From the 1988 sampling design emerged 45 1st-stage geographic areas, of which
11 entered at the first stage with a probability of 1 (all large cities), and 34 entered
with probability proportionate to their population size. A total of 2040 individuals
living in 135 congressional districts responded to the 1988 NES survey, an average
of about 15 individuals per district. CDs were partially nested within primary sam-
pling units, so that the effective N of CDs is in the 105–109 range.29

Table 5 provides summary information about the sampling design of the NES for
each year that congressional district data were gathered since 1956 (a total of 21
years).30 The only time that the NES departed from its basic area probability sam-
pling design was in 1978 and 1980, when the NES employed a multi-stage procedure
that used the CD as the 1st-stage sampling unit. In 1978, 108 CDs were selected at
the first stage (J), and roughly 25 individuals per CD (n) were selected in later stages.
CDs were first stratified on the basis of a combination of variables that included
geographic region, state, urbanization, and recent voting behavior. The individuals
sampled within CDs were clustered within lower units, so that the effective N within
the districts is substantially lower than 25, on average. As such, the within-district
findings cannot be generalized to the CD as a whole.

5.1. J, n, and r

Fig. 5 contains boxplots that depict the number of respondents per congressional
district (n), and list the number of CDs (J), across the NES studies from 1956 to
1998. The number of CDs varies over time from a low of 108 (in 1978) to a high
of 246 (in 1996), with an average of 150. Most of the over-time variation in the

29 Calculating the effective N requires taking into account the degree of clustering in the sample design
and the intraclass correlation for any given variable of interest. We estimated the intraclass correlation
(r) for two variables, one characterizing the race as open or as involving an incumbent (Open), and one
characterizing the margin of victory (Margin). The analysis examined the degree to which CDs were
clustered within primary sampling units (i.e., what percentage of the total variation in the two variables
was between-PSU variation as opposed to within-PSU variation). For Open the r̂ was 0.14 and for Margin
the r̂ was 0.12, and the n was, on average, 3. This translates into an effective N of 105 and 109, respect-
ively. In this analysis and in others that follow we relied upon data on US congressional districts over
the 1948–1998 period. We started with machine-readable data put together by Gary King, which covered
the 1948–1990 period (ICPSR #6311). We extended the dataset through 1998 using data provided to us
by Jennifer Steen. We also linked these data to the NES survey data over the period, allowing us to
characterize the CDs sampled by the NES and to identify how they differed from the population of CDs.
In such analyses, we excluded CDs from Hawaii and Alaska since those states are excluded from the
NES sampling frame.

30 Additional information about the NES study designs is available at http://www.umich.edu/~nes.
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Table 5
NES sample designs since 1956

Year N of CDs N of Sample design summarya

respondents

1956 145 1762 1950 SRC Sampling Frame
12 sr+54 nsr=66 PSUs

1958 141 1450 1950 SRC Sampling Frame
12 sr+54 nsr=66 PSUs

1960 141 1181 1950 SRC Sampling Frame
12 sr+54 nsr=66 PSUs

1964 138 1571 1960 SRC Sampling Frame
12 sr+62 nsr=74 PSUs

1966 133 1291 1960 SRC Sampling Frame
12 sr+62 nsr=74 PSUs

1968 144 1557 1960 SRC Sampling Frame
12 sr+62 nsr=74 PSUs

1970 155 1507 1960 SRC Sampling Frame
12 sr+62 nsr=74 PSUs

1972 164 2705 1970 SRC Sampling Frame
12 sr+62 nsr=74 PSUs

1974 155 1575 1970 SRC Sampling Frame
12 sr+62 nsr=74 PSUs

1976 162 2248 1970 SRC Sampling Frame
12 sr+62 nsr=74 PSUs

1978 108 2304 108 CD PSUs
1980 113 1614 108 CD PSUs (1978 Frame)
1982 168 1418 1970 SRC Sampling Frame

12 sr+62 nsr=74 PSUs
1984 134 2257 1980 SRC Sampling Frame

16 sr+68 nsr=84 PSUs (11+34=45 used)
1986 180 2176 1980 SRC Sampling Frame

16 sr+68 nsr=84 PSUs (16+45=61 used)
1988 135 2040 1980 SRC Sampling Frame

16 sr+68 nsr=84 PSUs (11+34=45 used)
1990 121 1980 1980 SRC Sampling Frame

16 sr+68 nsr=84 PSUs (11+34=45 used)
1992 181 2485 1980 SRC Sampling Frame

16 sr+68 nsr=84 PSUs (16+45=61 used)
1994 190 1795 1980 SRC Sampling Frame

16 sr+68 nsr=84 PSUs (16+45=61 used)
1996 246 1714 1990 SRC Sampling Frame

28 sr+80 nsr=108 PSUs (18+36=44 used)
1998 128 1281 1990 SRC Sampling Frame

28 sr+80 nsr=108 PSUs (18+36=44 used)

a In the “Sample design summary” column, we first list the year identifying the SRC sampling frame,
and then the number of primary sampling units (PSUs) chosen at the first stage of the sample design.
The abbreviation “sr” refers to self-representing (probability of selection=1), while “nsr” refers to non-
self representing. When we identify the number used in parenthesis, this means that only a subset of the
available PSUs were used in the particular study. A number of studies involved both cross and panel
respondents. Only in 1996 did this involve panel respondents who were selected from a different sampling
frame (1980) than were the cross-section respondents (1990), and hence from a different collection of
PSUs. This is why the number of CDs is so high in 1996.
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Fig. 5. The number of NES respondents per congressional district, 1956–1998.

number of CDs falling into the sample is a function of how many many units were
selected at the 1st stage of the multi-stage design (the number of primary sampling
units, or PSUs; see Table 5). The unusually high number of CDs in 1996—246—
occurred because the study included respondents drawn from both the 1990 PSUs
and the 1980 PSUs.31 The number of PSUs represented in the NES data, therefore,
was larger in 1996 than in any other NES study over the period.

The within-district sample sizes ranged from a low of 1 to a high of 90. Except
for 1978 and 1980, in each year the distribution of cluster sizes tended to be skewed
to the left, with a long right tail. Thus the median n tends to be in the range of 6–
10, while the means are often substantially larger. Because urban areas fall into the
typical NES sample with a high probability at the first stage, most of the CDs with

31 Every ten years, after the decennial census, the University of Michigan Survey Research Center
redesigns its sampling frame and selects a new set of PSUs. Hence, NES samples are typically drawn
from one set of PSUs for four to five election studies, and then when the sampling frame is redesigned,
drawn from a new set of PSUs (see Table 5). In the 1996 NES, the panel respondents had originally
been selected in 1992 from the 1980 SRC sampling frame, while the fresh cross-section respondents were
drawn from the 1990 SRC sampling frame.
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a small n are urban and most with a large n are rural. In other words, NES respon-
dents are more clustered in rural, than in urban CDs.32

It is ironic that the smallest J (108) and the largest average n (25) over the time
series occurs in 1978, the year NES first used the CD as a primary sampling unit
in an effort to advance scholars’ ability to study congressional elections. Although
there are reasons to seek a large within-district n, as we have suggested—e.g., if
one seeks to generalize to a particular district; to produce within-district “climate of
opinion” estimates; to use respondents as informants about the district, candidates
or campaigns; or to generate reliable aggregate district opinion measures for use in
studies of representation—all of these purposes require a large effective N of respon-
dents within districts. As mentioned previously, because of the degree of within-
district clustering in the 1978 sample design, this condition is not met. In any event,
a large sample of congressional districts still remains very important, in that it sub-
stantially affects one’s ability to draw conclusions from the data about both the
micro- and the macro-level dynamics at work. One could argue, then, that the 1978
design would have been enhanced by increasing J at the expense of n.

As we pointed out earlier, the effective N in a cluster design is a function of r
(rho) as well as J and n. For micro-level variables, r indicates the extent to which
respondents are similar to one another within macro-level units. Table 6 shows typi-
cal values of r̂ for an illustrative set of NES variables, based on treating respondents
as nested within congressional districts. As would be expected, the r̂ values are
largest when the variables concern CD-specific stimuli. Notice, for example, that
the r̂ is higher for Incumbent Approval than for Congress Approval. That is, the
within-district similarity is higher when respondents are asked about their own dis-
trict’s incumbent than when they are asked about Congress.33 Notice also that the
values of r̂ are substantially higher for two specific variables in the set: Vote Choice,
and Incumbent’s Perceived Ideology (average r̂ values of 0.275 and 0.213,
respectively). What such high values of r̂ reflect is the explanatory importance of
CD-level variables. There is more homogeneity within districts on variables like
Vote Choice and Incumbent’s Perceived Ideology than on the others in the table;
correspondingly, more of the total variation in these two variables is between-dis-
trict variation.

These high values of r̂ convey two points simultaneously. First, they remind us,

32 Since the 1st stage of the sampling procedure is only redesigned every decade, following the decennial
census, there is a very substantial departure from independence in the sampling of CDs and individuals
over time. This issue is discussed and illustrated in Appendix B.

33 When one is gathering data on respondents’ judgments and choices concerning the candidates in
their own districts but striving to analyze the full national sample of respondents, one must construct
variables that render the judgments and choices of respondents across districts comparable. This means,
for example, recording the respondent’s vote choice as a vote for the Democrat or the Republican, even
though there is a different pair of Democratic and Republican candidates involved in each district. The
rs will tend to be higher for such variables than for variables where common questions were asked of
all respondents concerning common stimuli (e.g., evaluations of Congress or of the President); the variance
across districts (relative to within) will tend to be higher because the stimulus itself is varying across
the districts.
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vividly, that CD-level variables are likely to be very important to explaining why
voters make the choices they do. Understanding variation in the vote requires under-
standing how the attributes of candidates, campaigns, and district contexts enter in.
Second, they imply that when the design clusters a relatively large number of respon-
dents into a relatively small number of congressional districts, then the effective
micro-level N relevant to analyses of the vote will be substantially diminished. In
1988, for example, while the total N was 2040, the effective N given a r̂ of 0.275
was about 1/5 of that—420.34 No design modification will influence the fact that,
as long as CD-level variables are influential, then individuals who are nested within
CDs will tend toward homogeneity. The only response one can make is to try and
exploit the features of the design that are under one’s control. With r reaching magni-
tudes of 0.2 and even up to 0.5 (see Table 6), the imperative to do so is even stronger.
In short, these findings underscore the importance of trying to build more power
into one’s sample design—by increasing J at the expense of n, and by employing
stratification strategically.

5.2. Using CD as a sampling unit—or not

Most of our earlier discussion has focused on how to design a sample under the
assumption that one would use the congressional district as a 1st-stage sampling
unit. Yet, with the exception of 1978 and 1980, this has not been the NES practice.
There are two important implications that follow from this.

First, if the CD is not a sampling unit, one cannot exert the same kind of control
over those aspects of the research design that we have emphasized—J, n, and the
characteristics of the CDs sampled (stratification). One can still exert some control,
of course, by, for example, increasing the number of PSUs sampled (and hence the
number of CDs) and by stratifying PSUs on attributes likely to be correlated with
variables important to understanding congressional elections (which is probably not
urban/rural). Consider the 1996 NES study, which turned out to have a relatively
strong design for the analysis of congressional elections. Because the NES in 1996
reinterviewed some respondents originally selected in 1992 using the 1980 SRC
sampling frame, while also interviewing a fresh cross-section of respondents drawn
from the 1990 SRC sampling frame, the number of CDs was unusually large and
the average n was unusually small. This was probably an unforeseen, but nevertheless
fortuitous, side-effect of a design settled upon for reasons that have nothing to do
with studying congressional elections. In any event, in terms of the control that can
be exerted over the design, one is far better off using the CD as the sampling unit.35

34 In calculating this figure we used the average Vote Choice r̂ of 0.275, the N of 2040, the average
n of 15, and the equation for effective N shown earlier [Eq. (4)]. Even this low estimate of the effective
N is probably too large, in that it assumes that the CDs are chosen at random (i.e., that the effective N
of CDs is J). But CDs were partially nested within PSUs in 1988.

35 It is conceivable that one would field a large enough study to gather survey data on individuals
within all 435 districts in the US. Then, the CD would not be a sampling unit; instead, the sample design
would involve stratification by CD.



259L. Stoker, J. Bowers / Electoral Studies 21 (2002) 235–267

The second issue concerns generalization. The NES studies have been designed
to generate a representative sample of eligible voters but not a representative sample
of congressional districts (except, as noted above, in 1978 and 1980). If the CD is
not used as a basis of sampling, then CDs fall into the sample for reasons that are
not entirely foreseeable, or at least fall into the sample with no well-defined prob-
ability.36 Since we do not have an equal probability sample of CDs there is no reason
to expect the NES sample of CDs to look just like the population. In fact, for
example, the NES has tended to overrepresent CDs with Democratic incumbents or
where Democrats have tended to win by large margins. Correspondingly, the NES
has tended to underrepresent CDs with Republican incumbents or large Republican
margins of victory. This is demonstrated in Fig. 6.37

Without random selection at the CD stage one cannot generalize sample findings
about districts to the population of CDs, just as one cannot generalize from a non-
probability sample of individuals to a larger population of individuals. In other
words, there is no reason to believe that findings based on the CDs that fall into the

Fig. 6. Percentage of CDs with large Democratic margins of victory, and percentage of CDs with Demo-
cratic incumbents—population percentages versus NES percentages.

36 In fact, the probability of selection for any given CD could, in principle, be estimated, using infor-
mation about the probability of selection, and population size, of PSUs and lower-level sampling units.
This would not be an easy task—and to our knowledge, it has never been attempted—but if these prob-
abilities were calculated then sampling weights could be devised to remedy the problems concerning
generalizability we address here.

37 We emphasize: This does not mean that the NES sample of respondents fails to represent the popu-
lation from which it is drawn. Except in 1978 and 1980, the NES studies have not been designed to
generate a representative sample of CDs, but only to generate a representative sample of eligible voters
in the continental United States (excluding Alaska and Hawaii).
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NES sample would be similar to what one would observe if analyzing the population
of CDs as a whole. With a design like the NES, one can only make generalizable
statements about individuals, and even then one must avoid statements which sneak
in the assumption that the NES sample of CDs is representative. For example, one
would be on shaky ground concluding that “Men and women reacted differently to
the female congressional candidates running in 1998” if such a conclusion emerged
from an analysis of the NES data. There is no particular reason to believe that this
same relationship would be observed in an analysis of how voters reacted to the full
set of female congressional candidates vying for office across the nation.

5.3. Sampling CDs with rare attributes—or not

When sampling rare events, one is more likely to undersample them than to over-
sample them, especially if the number of independent draws is small. With a dichot-
omous variable, where one outcome is rare (e.g., competitive race) and the other
outcome is common (uncompetitive race), this is given by the asymmetry of the
binomial distribution. If, for example, 5% of the races in the population are competi-
tive, then it is likely that less than 5% of one’s sampled CDs will be competitive.
This is one reason why stratification is a useful procedure. If the population were first
stratified on the basis of the competitive/uncompetitive variable, then any random
deviations from the 5%/95% breakdown in the sample could be avoided. One could,
for example, ensure that exactly five competitive CDs fell into one’s sample of
100 CDs.

In the case of the NES, the number of independent draws is sufficiently small so
as to make this a potential problem, at least with respect to sampling relatively rare
events (e.g., CDs with competitive, open-seat races). That number—i.e., the effective
N of CDs—is no more than the actual number of CDs that falls into the NES sample,
and can be substantially lower than that, given the multi-stage clustered sample
design that the NES employs (though will be no smaller than the number of primary
sampling units drawn at the first stage of the sample). As mentioned earlier, in 1988,
for example, 135 CDs fell into the NES study, but the effective N was in the range
of 105 to 109. Fig. 7 shows that, across the 21 election studies we are examining,
the NES sample did tend to produce fewer CDs with competitive, open-seat races
than were present in the population. This pattern is consistent with the argument we
reviewed above, although it is also possible that it is caused by some other aspect
of the multi-stage sample design.

The fact that we are vulnerable to undersampling CDs with rare traits is not incon-
sequential, but the much more serious problem is that, even without such accidents
of chance—i.e., even if our sample percentage exactly equaled the population per-
centage—we end up with a sample with very, very few micro- and macro-level cases
with the attribute in question. The worst year for the NES in this respect was 1988,
where only 22 respondents came from a district with a competitive, open-seat race
(1.1% of the total sample), and all of these respondents came from one district (see
Table 7). By contrast, 1776 (90.1%) of the 1988 NES respondents, from 121 districts,
faced uncompetitive races involving an incumbent. In one of the better years, 1994,
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Fig. 7. Percentage of CDs with open-seat and competitive races—population percentages versus NES
percentages.

the NES sample included 111 respondents (6.7%) from seven districts in the
competitive/open category, and 1254 respondents (75.2%) from 138 districts in the
uncompetitive/incumbent category.

What this means is that the variance in CD-level explanatory variables like Open
and Competitive is typically, and in years like 1988, extremely limited. With so few
CD-level cases in three of the four cells of the table obtained by crossing Open and
Competitive, statistical efficiency is seriously diminished. And, if one seeks to elabor-
ate the model by adding additional CD-level variables or by building interactions
among them, serious problems involving multicollinearity are likely to arise.

One response in this circumstance, as we suggested earlier, is to alter the sample
design by sampling so as to ensure balance in the number of CDs with crucial attri-
butes (our “design B” , Table 3). This would essentially even out the CD percentages
in Table 7 and generate more statistical power for estimating CD-level effects. This,
however, may not be a bold enough step. If the sample design remains an equal
probability sample at the individual-level, the alteration just described would leave
the percentage of respondents falling into the various CD categories in Table 7
unchanged. Do we really want upwards of 75%—and as high as 90%—of the NES
respondents to reside in districts where there is essentially no race?
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Table 7
Congressional districts in the NES: distribution of CDs and respondentsa

Year Incumbent Incumbent Open-seat Open-seat
Not competitive Competitive Not competitive Competitive

56 NES CDs 76.1 17.6 5.6 0.7
NES Rs 76.2 18.2 4.2 1.4

58 NES CDs 66.2 20.3 9.0 4.5
NES Rs 56.9 30.3 9.1 3.6

60 NES CDs 78.3 14.5 3.6 3.6
NES Rs 69.9 21.4 5.5 3.1

64 NES CDs 71.1 16.3 7.4 5.2
NES Rs 66.4 21.9 6.8 4.8

66 NES CDs 78.6 12.2 6.9 2.3
NES Rs 80.3 11.3 7.2 1.2

68 NES CDs 78.2 9.2 6.3 6.3
NES Rs 78.0 11.9 4.0 6.1

70 NES CDs 81.5 7.9 6.6 4.0
NES Rs 84.5 8.2 5.0 2.3

72 NES CDs 75.9 8.9 10.8 4.4
NES Rs 78.0 7.0 9.0 6.0

74 NES CDs 70.7 16.0 10.0 3.3
NES Rs 66.8 19.5 7.4 6.2

76 NES CDs 80.3 5.7 8.3 5.7
NES Rs 78.0 6.4 11.7 3.9

78 NES CDs 80.4 6.9 9.8 2.9
NES Rs 80.0 7.3 9.2 3.5

80 NES CDs 83.3 11.1 3.7 1.9
NES Rs 82.4 11.2 4.9 1.5

82 NES CDs 69.4 13.8 15.0 1.9
NES Rs 71.4 15.0 10.4 3.2

84 NES CDs 83.2 7.6 6.1 3.1
NES Rs 80.6 10.2 8.5 0.7

86 NES CDs 86.2 4.6 5.7 3.4
NES Rs 88.4 5.2 4.9 1.4

88 NES CDs 91.7 2.3 5.3 0.8
NES Rs 90.1 1.2 7.6 1.1

90 NES CDs 88.2 5.0 5.0 1.7
NES Rs 87.8 3.0 4.6 4.7

92 NES CDs 68.0 13.3 12.7 6.1
NES Rs 67.4 12.4 15.7 4.5

94 NES CDs 77.5 11.8 6.7 3.9
NES Rs 75.2 10.0 8.2 6.7

96 NES CDs 75.9 12.9 7.1 4.1
NES Rs 77.8 12.9 5.5 3.7

98 NES CDs 83.2 9.3 3.7 3.7
NES Rs 76.8 11.4 1.6 10.2

a Cell entries contain %s, describing the distribution of NES cases across the four category CD-level
variable identified in the top row. The % of NES CDs is the % of CDs in the NES sample (i.e., represented
by at least one NES respondent) with the named characteristic. The % of Rs is the % of respondents
falling into the named type of CD.
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6. Conclusion

Our advice about how to design a study of congressional elections challenges both
conventional wisdom and current practice. If congressional elections are predomi-
nantly local affairs, where what is happening in local contexts is critical to under-
standing the election outcome, then despite intuition to the contrary, we should be
designing national surveys that sample relatively few individuals within relatively
many CDs. We should also exert control over which CDs fall into our sample, by
using CD as a sampling unit and stratifying by important explanatory variables.
These stratifying variables are likely to be political, not geographic. Stratification will
ensure that our sample contains sufficient variation on key macro-level explanatory
variables, enhancing the value of the data to analysts. Even further gains in statistical
efficiency can be made by undertaking a national survey that does not generate an
equal probability sample of eligible voters (though it should, of course, sample eli-
gible voters with known probability so that sampling weights can be devised and
applied). This means oversampling individuals within districts that have rare traits,
undersampling in other districts to avoid the inefficiencies of large clusters, and
directing resources toward extending the overall CD sample size.

To illustrate and defend these arguments, we have relied on examples, simulations,
and data analysis. In this process, we have been quite critical of the NES multi-stage
cluster sample design. What we have not discussed is that the NES’ use of this
design reflects cost considerations that flow from the NES commitment to in-person
interviewing, which, itself is based on a commitment to data quality. It is simply
too costly (in terms of expense) to conduct in-person interviews with a widely dis-
persed sample of respondents, and too costly (in terms of data quality) to abandon
the in-person sampling frame and interview format. Throughout this paper we have
not considered the practical difficulties associated with implementing various sample
designs, nor situated our advice about sampling within a broader research design
framework. But, of course, it makes no sense to encourage researchers to pursue
sampling strategies that are too expensive to execute or would compromise data
quality. Similarly, while stratification on political variables is desirable from a theor-
etical standpoint, one needs stratifying variables for which data on population units
can be collected, with relative ease, well in advance of the fieldwork. When designing
any sample, such considerations must be balanced alongside the kinds of statistical
considerations that we have emphasized.

Thus, we think of our advice as opening or reopening, not closing, the discussion
about how to design surveys of congressional elections. At the same time, although
we have mentioned “congressional” 53 times, “district” 115 times and “NES” 116
times so far, this paper has not just been about designing research focused on con-
gressional elections in the United States. Our arguments are applicable to any
research problem involving multiple levels of analysis. The most obvious extension
is to research focused on subnational elections in other countries. But multi-level
problems are many and varied. Researchers studying political institutions examine
bureaucrats nested within bureaucracies and legislators nested within legislatures.
Political communications researchers gather data on newspaper articles nested within
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newspapers and advertisements nested within campaigns. In each of these cases and
others, researchers must decide how to trade J for n, how to stratify, and must grapple
with r. We hope that this discussion, while focused on the study of congressional
elections in the US, sheds light on the design issues scholars facing other multi-level
problems must confront.
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Appendix A. The multi-level model

The multi-level model was developed to represent how the behavior of individuals
is influenced by their own (individual-level) characteristics as well as the character-
istics of the contexts in which they are nested (CDs, in our case). Below, we illustrate
the model for the case in which there are two district-level explanatory variables
and one individual-level explanatory variable. Interested readers should consult Bryk
and Raudenbush (1992), Goldstein (1999), Jones and Steenbergen (1997), Kreft and
De Leeuw (1998), and Snijders and Bosker (1999) for further details.

yij �b0j�b1jxij�eij (A1)

b0j�g00�g01z1j�g02z2j�u0j (A2)

b1j�g10�g11z1j�g12z2j�u1j (A3)

Combining the previous three equations, we have:

yij �g00�g01z1j�g02z2j�u0j �(xij)(g10�g11z1j�g12z2j�u1j)�eij (A4)

�g00�g01z1j�g02z2j�g10xij�g11z1jxij�g12z2jxij�(u0j�u1jxij�eij), (A5)
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where j=1…J and i=1…nj.
Eq. (A1) specifies the relationship at the micro level (where xij is the individual-

level independent variable). Eqs (A2) and (A3) specify the relationship between the
coefficients of the micro-level equation and the macro-level variables. Finally, Eqs
(A4) and (A5) combine the previous equations into a single equation. With this
model, one can evaluate the extent to which a macro-level variable (z1j or z2j) directly
influences the dependent variable. At the same time, the micro-level regression coef-
ficients b, are allowed to vary across macro-level units. That is, each macro-level
unit (j) is allowed to have its own intercept (b0j) and slope (b1j). The mean of the
distributions of these intercepts and slopes is summarized by the g terms found in
Eq. (A5). The term g00 is the overall mean of yij; g01 and g02 indicate the (average)
direct effects of the macro-level variables on yij; g10 indicates the (average) direct
effect of the micro-level variable; g11 and g12 indicate the (average) effect of the
cross-level interactions.

In Eq. (A5) the terms from Eq. (A4) have been reordered to put all of the error
terms at the end, in parentheses. Notice that this error component includes a term
that refers to the micro-level independent variable. The existence of this term is
taken into account in multi-level model estimation, but would not be taken into
account if one simply tried to estimate the effect of micro-level, macro-level, and
cross-level interaction variables with OLS (hence, resulting in bias with OLS
estimation). This error component also includes terms (u0j and u1j) that refer to the
variance in the macro-level intercepts and slopes, respectively. And, it contains the
micro-level disturbance (eij). Either Maximum Likelihood or Generalized Least
Squares is necessary to efficiently estimate the model (Snijders and Bosker, 1999,
pp. 56–57).

Appendix B. Non-independence across time in the NES sample of CDs

The first stage of the NES sampling procedure, involving the selection of PSUs,
is revised every ten years, in the wake of the decennial census. Because of this, once
a CD falls into the sample it tends to stay there for study after study, until the next
census is taken and the NES sampling frame is revised. In other words, there is a
substantial departure from independence in the sampling of CDs (and individuals)
over time. The extent of this departure is illustrated in Fig. 8. Along the X-axis is
the number of times that a CD fell into the NES sample over the 21 election studies
between 1956 and 1998 where CD information is available from NES. The height
of the bars represents the proportion of CDs falling into each category along the X-
axis. Thus, for example, the first bar shows that 14.8% of the CDs were never rep-
resented in any NES sample over the period, while the last bar shows that .6% were
represented 20 out of 21 times. The area under the illustrated density curve indicates
the expected percentages under an assumption of independence of the draws.38 The
contrast is stark.

38 The figure depicts the binomial density with P set to .35, since on average over the period the NES
sample included 35% of the population of CDs.
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Fig. 8. Empirical distribution of CD appearances in the NES, and expected distribution under an assump-
tion of independence in the draws.

This figure can be viewed as illustrative, but no more, in that it builds in a problem-
atic assumption—namely, that the identity of a given CD is unchanging over the
entire time span. In developing this figure, we first threw out all CDs that did not
“endure” over the 1956–1998 period. Some were created after 1956, as a function
of redistricting, and some that once existed later disappeared, again because of
redistricting. By our count, a total of 512 CDs were in existence for at least one
election over the 32 years; 359 were in existence for the entire period. This assumes,
however, that any district which retained its unique identifying number over time
was actually the same unit at each point in time. This, however, is clearly wrong.
Minnesota District 2, for example, may have completely been transformed in its
boundaries, perhaps several times, over the period. The over-time dependence in the
sample of CDs, illustrated in Fig. 8, only becomes an issue for research that analyzes
CD-level data over time. Yet such research cannot even be begun without solving
the seemingly intractable “unit change” problem just described.
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