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Abstract

In a landmark study of political participation, A. Gerber and D. Green (2000)
experimentally compared the effectiveness of various get-out-the-vote interven-
tions. The study was well-powered, conducted not in a lab but under field
conditions, in the midst of a Congressional campaign; it used random assign-
ment, in a field where randomization had been rare. As Fisher (1935) showed
long ago, inferences from randomized designs can be essentially assumption-free,
making them uniquely suited to settle scientific debates. This study, however,
prompted a contentious new debate after Imai (2005) tested and rejected the
randomization model for Gerber and Green’s data. His alternate methodology
reaches substantive conclusions contradicting those of Gerber and Green.

It has since become clear that the experiment’s apparent lapses can be as-
cribed to clustered treatment assignment, rather than failures of randomization;
it had randomized households, not individuals. What remains to be clarified is
how this structure could have been accommodated by an analysis as sparing with
assumptions as Fisher’s. The present paper adapts recent advances in random-
ization inference to this purpose, furnishing new theory to accommodate cluster-
ing and stratification in both small- and large-sample inference for attributable
effects. Since the method estimates the number of votes attributable to treat-
ment, rather than its coefficient in a maintained proportional odds model, it is
well-suited to the assessment of get-out-the-vote studies; but it also applies more
broadly, to most experiments and observational studies with binary treatments
and binary outcomes.
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1 Introduction

In a landmark study of political participation, A. Gerber and D. Green (2000) experi-

mentally assessed effectiveness of get-out-the-vote (GOTV) appeals delivered over the

telephone, by mail, and through personal contact, randomly varying the assignment of

interventions in accordance with a full factorial design. The study was well-powered,

conducted not in a lab but under field conditions, during the run-up to the 1998 Con-

gressional elections in New Haven, Connecticut; it used recent techniques to account

for non-compliance with minimal assumptions; and the design was based on random

assignment, in a field where randomization was rare. As Fisher (1935) showed long

ago, such a design supports randomization-based inferences about its interventions’

efficacy, inference that is essentially model-free and ought in principle to be above

reproach. This study’s inference, however, prompted a contentious debate — in the

flagship journal of the American Political Science Association — after Imai (2005)

tested and rejected the randomization model for Gerber and Green’s data. His al-

ternate methodology, which avoids assuming that randomization was carried out as

planned, delivers substantive conclusions that contradict Gerber’s and Green’s. They

had found that impersonal appeals delivered by telephone did not mobilize voters while

in-person appeals did; Imai’s analysis attached statistically and materially significant

benefits even to the telephone intervention. These incompatible conclusions have con-

tradictory ramifications for both the theory and practice of voter mobilization (Gerber

and Green 2000, 2005a; Imai 2005).

As it happens, the Vote ’98 study’s apparent anomalies did not arise from a failure

of randomization. The design had randomized households, not individuals, a compli-

cation noted but not addressed in Gerber and Green’s original report (2000). This

clustered assignment induced treatment-control comparisons that by metrics appropri-

ate to individual randomization would seem quite biased, although metrics appropriate

to the design remove the appearance of bias. This is apparent in Table 1, which com-

pares on selected baseline characteristics subjects to whom personal appeals were and

were not attempted, first without and then with appropriate adjustments for cluster-

ing. The tests that accompany the descriptive comparisons are performed as follows.

Let the study subjects be numbered 1, . . . , n and let x be one of the baseline variables;

let I ⊆ {1, . . . , n} identify the in-person intervention group; and let I consist of all sub-

sets of {1, . . . , n} which, according to the maintained description of the design, could

have been selected as the intervention group. (The precise composition of I depends on

whether treatment was assigned to clusters or individuals, on whether it was assigned
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Standardized Differences in Several Covariates (as % of a pooled s.d.)
Assumes Assignment by Household?

Covariate No Yes

1- vs. 2-voter household 2 2
Voted in previous election 1 1

was registered, didn’t vote −2 −4
Member of a major party 0 −5
Age: B-spline 1 0 −2

...
B-spline 6 −2 −2

Ward 2 0 −0
Ward 3 −5 *** −12 **

...
Ward 30 1 1

overall χ2/d.f.: 58/38 * 40/38

Table 1: Standardized differences on baseline measures between subjects to whom in-
person appeals were and were not attempted, first ignoring and then accounting for
household-level randomization. The standardized difference consists of the difference of
intervention- and control-group means, either individual means or means of household
totals, as a percentage of the variable’s s.d. (as pooled across intervention and control
groups). The age measure, an important predictor of voting, has been decomposed into
natural cubic splines with knots at sextiles of the sample age distribution, generating
6 loadings onto a B-spline basis. Wards are contiguous regions of New Haven in which
subjects were registered. Results of permutation tests for imbalance are indicated as
follows: no flag, p > .1; “.”, p ≤ .1; . . . ; “***”, p ≤ .001.

within strata, and on n, in a fashion to be discussed presently.) Then the hypothesis

of balance is rejected, at level α, if
∑

I xi falls outside the central (1 − α)100% of

{
∑

j∈J xj : J ∈ I}. We perform these tests for each variable x, giving some 40 compar-

isons in each column, only a subset of which are shown in the table. The χ2 statistics

given at bottom summarize these comparisons (Hansen 2006a). When individual-level

assignment is assumed, the hypothesis of well-functioning randomization is rejected

(p = .02); but under the correct assumption of assignment by household, that hypoth-

esis is sustained (p = .4). The experiment is vindicated.

The structure of the set I of possible treatment assignments, and thus the substance

of tests in Fisher’s style, depends subtly but importantly on the role of clustering in

assignment to treatment. For the tests assuming individual assignment, J ∈ I if

#J ∩ S = #I ∩ S, for each of the four subclasses S delineated by whether subjects

were or were not assigned to the remaining treatments, mail and telephone GOTV. For
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tests assuming household assignment, J ∈ I if: (i) for all subjects i, j from the same

household, either i, j ∈ J or i, j 6∈ J ; and (ii) for each subclass S of assignments to the

remaining treatments, the number of households represented in J ∩ S is the same as

in I ∩ S. Table 1 proves that this is a distinction with a difference: the tests ignoring

clustering declare that treatment had an effect on baseline variables, whereas the test

accounting for clustering avoids this absurd conclusion. This is so despite the clusters’

being no larger than two — had they been smaller, they would cease to be clusters

— and their being relatively well-balanced across treatment groups, as shown by the

first row of the table. It is a distinction, clearly, to which the analysis should carefully

attend. Analytic methods accounting for clustered treatment assignment and binary

outcomes, albeit from a model-based perspective, include those of Raudenbush (1997),

Murray (2001), and Thompson et al. (2004); Braun and Feng’s approach (2001) is

randomization-based, but not readily adaptable to estimation of attributable effects.

Clustering-aware balance tests vindicate the Vote 98 experiment’s randomization,

but they do not adjudicate between Gerber and Green’s and Imai’s contradictory in-

ferences, each of which is supported by its own statistical model. Their methods, two-

stage least squares and related techniques (Gerber and Green) and propensity-score

matching (Imai), are both well-received and widely used. The methods’ assumptions

— Gerber and Green’s, about potential response surfaces; Imai’s, about conditional

probabilities governing receipt of treatment — differ in character and perhaps also

in degree, but resemble one another in that neither is entailed by established fact or

theory. What the debate now requires is an analysis from first, Fisherian principles,

eschewing speculation of either of type.

Fisher’s randomization analysis culminates in tests of whether treatment had an

effect — any effect, large or small. More recent techniques are needed to infer the num-

ber of events, votes for example, caused by a treatment; performing such inferences

with clustered and stratified designs requires extension even of these methods. The re-

mainder of the introduction reviews Rosenbaum’s (2001) method of attributable effects

using an experiment from the voter mobilization literature which has a simpler research

design than the Vote 98 experiment. § 2 extends Rosenbaum’s work to accommodate

clustering. Section 3 applies this method to unmatched studies with stratification.

New methodology also appears in § 4, which elaborates our randomization-based infer-

ences so as to leverage covariate information for improved precision. Section 5 studies

the potential for these methods to over- or understate confidence coefficients in small

samples. Section 6 concludes.
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1.1 Votes attributable to treatment in a simple randomized

turnout experiment

In 1978 Marion Barry became Mayor of Washington, D.C., leaving the city with a

vacant seat on its city council. Before a special election to fill Barry’s seat, Adams

and Smith (1980) arranged that calls be placed to n = 1325 subjects, soliciting their

votes on behalf of one of the candidates, John Ray. These subjects had been randomly

selected from a pool of N = 2650 potential voters, no two of which shared a household,

for whom turnout would later be determined from public records. Because the experi-

ment is smaller and simpler than Gerber and Green’s, we use it to illustrate the basis

of our approach. The form of analysis sketched in this section is due to Rosenbaum

(2001) (but see also Copas 1973).

Thirty percent of treatment group members voted in the special election, whereas

only 24% of the control group voted. Could this difference be due to chance? Consider

the hypothesis that it was, that treatment was inert. If this is so, then the labeling of

one half-sample as treatment and another as the control group is in effect arbitrary,

so far as their eventual voting, y, was concerned. From basic theory of simple random

sampling, EJ∈I(
∑

J yj) = nȳ and VarJ∈I(
∑

J yj) = n(1 − n/N)s2(y), where I = {J ⊆
{1, . . . , N} : #J = 1325}. By these formulas, 353.5 ± 11.4 votes are expected for the

treatment group. From tables of the hypergeometric distribution, if the treatment had

no effect, 95% of possible samples would have tallied between 331 to 376 votes. Yet

Adams and Smith recorded 392 votes from their intervention group. While not logically

incompatible with our hypothesis, these data are at odds with it, as less than .1% of

half-samples assemble so disproportionate a share of the 707 total votes. Fisher’s test

sets aside such improbabilities, encouraging us to conclude instead that this treatment

was not inert.

Granting that treatment had an effect, let us probe this effect’s likely magnitude.

For concreteness, consider the hypothesis that treatment caused 50 votes. The analysis

just given no longer simply applies, since an excess in
∑

I yi as compared to its per-

mutation distribution can be explained by this hypothesized treatment effect, without

supposing a treatment group improbably predisposed toward voting. To avoid this

obstacle, begin by removing the hypothesized treatment effect of 50 votes. The hy-

pothesis entails that 392 − 50 intervention group members would have voted in the

absence of treatment; there is no change to the number of voting controls (315). Those

subjects’ potential and actual responses to the control condition can be represented,

under this hypothesis, with a binary variable yc taking 1 as a value 342 times on I, 315
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times on the complement of I, and otherwise 0. We therefore compare 342, not 392, to

the distribution of
∑

j∈I ycj, not
∑

j∈I yj, for each uniform random draw I from I. The

result is a two-sided p-value of .21. The hypothesis attributing 50 votes to treatment,

denoted [A = 50], is sustained.

In like fashion p-values attach to each of [A = 0], . . . , [A = 392]. Inverting such

hypothesis tests gives confidence intervals and point estimates. For Adams and Smith’s

experiment, the 95% confidence interval (CI) is [33, 119] votes, or an increase in turnout

of 392
392−33

− 1 = 9% to 392
392−119

− 1 = 44%. Interpreted in terms of the proportion of the

treatment group that voted because of treatment, the interval becomes 33
1325

= 2.5%

up to 119
1325

= 9.0%. Mimicking Hodges and Lehmann’s (1963) technique for models

with additive effects, a point estimate may be taken as the midpoint of the smallest

nonempty 1−α CI. In this study, that would be the 3% CI, which includes 76,77, and

78; the point estimate is 77 votes, or a 24% turnout boost.

1.2 Three causal assumptions: noninterference, exclusion and

nonnegative effects

No interference between units (Cox 1958, §2.4), or the stable unit treatment value

assumption (Rubin 1986), states that only subject i’s treatment assignment can affect

subject i’s response. Some version of this assumption is needed to justify the notation

yci for subject i’s potential response to control, by excluding the possibility of other

subjects’ treatment assignments influencing i’s response to control. We have assumed

noninterference outright for Adams and Smith’s study, but the New Haven study re-

quires a weaker assumption, since its cohabiting voters can be expected to influence

one anothers’ voting decisions (Stoker and Jennings 1995). Assuming noninterference

between clusters (households), write yi for subject i’s observed response, yci for his

potential response if his household were assigned to control, and τi for yi − yci, the

effect of treatment on subject i.

The exclusion restriction (Angrist et al. 1996) says assignment to the treatment

group affects outcomes only via administration of the treatment. In GOTV interven-

tion studies, this is the reasonable premise that only the voting of contacted subjects

can have been influenced by the intervention: τi = 0 unless i ∈ C, the set of treatment

group members who complied with treatment (Rosenbaum 1996; Greevy et al. 2004).

Hamilton (1979) assumes treatment may increase the response but never reduces it, in

symbols τi ≥ 0 for all i; call this nonnegativity. Following Rosenbaum (2002a), a de-

tailed hypothesis as to how each subject would have voted in the absence of treatment,
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Households containing: 2 subjects 1 subject Total no. of. . .
Votes from household: 2 1 0 1 0 votes subjects
Treatment 43 176 223 130 311 392 1325
Control 25 160 257 105 336 315 1325

Table 2: Adam and Smith’s treatment and control groups, as imagined to have been
assigned to treatment as households, each containing one or two experimental subjects.

[yc = ỹc], is called compatible if it is consistent both with the exclusion restriction and

with nonnegativity. Our analysis of the New Haven data will consider all and only the

compatible hypotheses. By considering all the compatible hypotheses, we avoid mak-

ing any assumptions about homogeneity of the treatment effect. This is in contrast

with many other permutation-based approaches, including Braun and Feng’s (2001)

and Rosenbaum’s (2002b).

2 Attributing effects by cluster

Adam and Smith’s study placed calls to a simple random sample of individuals, whereas

Gerber and Green’s involved calling a random sample of households, some containing

more than one subject. We now extend the method of § 1.1 to handle this complication.

To illustrate the extension, this section adds fictitious clusters to Adams and Smith’s

data.

2.1 Clusters as units of analysis and assignment

Suppose in this section that Adams and Smith’s treatment group had consisted of a

simple random sample of one- or two-potential-voter households. Specifically, imagine

that the vote totals presented in § 1.1 summarize the more detailed arrangement in

Table 2. What modification to § 1.1’s hypothesis tests would this require?

Let y1, . . . , yM be indicators of the M = 2650 subjects’ actual voting and let

yc1, . . . , ycM represent how they would have voted had none of them been called. Let the

“cluster” function clr : {1, . . . ,M} → {1, . . . , N} map indices of subjects to indices

of their clusters (households), write I for the indices of clusters assigned to treat-

ment, and C ⊆ I for the clusters in which someone received treatment. Write A for∑
{τi : clr(i) ∈ I} =

∑
clr(i)∈I yi − yci, the sum of effects attributable to treatment.

Let I contain all possible treatment groups and let I be a random set distributed uni-

formly on I.
∑

clr(j)∈I ycj is again the sum of a simple random sample, not of m = 1325

subjects’ yc values but of n = 883 from N = 1766 households’ totals tc of yc values,
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tck =
∑

clr(i)=k yci. Its distribution has moments

E(
∑
j∈I

tcj) = nt̄c, Var(
∑
j∈I

tcj) = n(1− n

N
)s2(tc)

and is approximately Normal for large N (and n/N not close to 0 or 1), by the

CLT for simple random samples (Erdős and Rényi 1959). The test that rejects if∑
clr(l)∈I ỹcl =

∑
I t̃ci, the treatment group’s vote total net of votes hypothetically

attributed to treatment, falls outside E(
∑

j∈I t̃cj)± zα/2Var(
∑

j∈I t̃cj)
1/2, is asymptot-

ically of level α.

Tested in this way the strict null hypothesis, which says tci = ti for all i, gives

t̄c = .4003, s2(tc) = (N/(N −1))(t2c − (t̄c)
2) = (.4773− .40032) = .3173, and acceptance

regions of form 353.5± zα/211.8. Accounting for assignment by clusters has increased

these regions’ half-width slightly, from 11.4|zα/2| to 11.8|zα/2|; accordingly the p-value

for the strict null increases slightly, to .001.

Testing hypotheses asserting an effect now requires attention to where the effects

are placed. Let two hypotheses, H = [tc = t̃c] and H∗ = [tc = t̃∗c ], satisfy
∑

i(ti− t̃ci) =∑
i(ti − t̃∗ci) = 2. Then ¯̃tc = ¯̃t∗c = .4003 − 2/1766, so that the two hypotheses entail

the same first moment for the test statistic; but s2(t̃c) need not equal s2(t̃∗c), so that

Var(
∑

j∈I t̃cj) and Var(
∑

j∈I t̃
∗
cj) may differ. If H attributes its 2 votes to a single

two-subject household, then (t̃c)2 = .4773 − 22/1766, whereas if t̃∗c attributes its to

two separate one-subject households, then (t̃∗c)
2 = .4773 − 2 · (1/1766). The implied

difference in variances is small, 139.4 as opposed to 139.9, but the spread among

such differences increases as hypothesized effect size increases, and cannot generally

be ignored. Suppose now that H = [tc = t̃c] has
∑

i∈I ti − t̃ci = 31, with t̃k = 2

and t̃ck = 1 for precisely 31 households k. Then
∑

i∈I t̃ci falls 2.08 · Var(
∑

j∈I t̃cj)
1/2

above E(
∑

j∈I t̃cj), suggesting that at level α = .05 the hypothesis [A = 31] should be

rejected. That composite hypothesis, however, contains other simple hypotheses. For

instance, a hypothesis H∗ = [tc = t̃∗c ] with
∑

i∈I ti − t̃∗ci = 31 but ti = 1 and t̃∗ci = 0 for

31 one-subject households i has
∑

i∈I t̃
∗
ci = E(

∑
j∈I t̃

∗
cj) + 1.955 · Var(

∑
j∈I t̃

∗
cj)

1/2, and

is narrowly sustained. In consequence, [A = 31] is sustained, despite the rejection of

H.

Both H and H∗ issue the same test statistic,
∑

i∈I t̃ci =
∑

i∈I t̃
∗
ci = 392 − 31, and

null expectation, E(
∑

j∈I t̃cj) = E(
∑

j∈I t̃
∗
cj) = 883(.4003− 31/1766), so the difference

in z-statistics is due entirely to differences in induced variances. The test of a simple

hypothesis [tc = t̃c] is also a test of the composite hypothesis [A = a],
∑

i∈I ti− t̃ci = a,

if and only if [tc = t̃c] maximizes Var(
∑

j∈I t̃cj) among compatible [tc = t̃∗c ] such that
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∑
i∈I ti − t̃∗ci = a, since the composite is rejected only if each simple hypothesis falling

under it is, and since among hypotheses giving the same test statistic and null expec-

tation the variance-maximizing hypothesis is the most difficult to reject. (This holds

for all two-sided tests, and for one-sided tests provided that α < 1
2
.) Proposition 2.1

describes the variance-maximizing simple hypotheses within a composite [A = a].

Proposition 2.1 Let I be uniform on I. Let [tc = t̃c] be a compatible hypothesis, and

let a =
∑

i∈I ti − t̃ci. If [tc = t̃c] maximizes Var(
∑

j∈I t̃ci), in the sense that for all

compatible [tc = t̃∗c ] such that
∑

i∈I ti − t̃∗ci = a, Var(
∑

j∈I t̃cj) ≥ Var(
∑

j∈I t̃
∗
cj), then:

(i) There exists an integer γ0 ≥ 1 such that if tk < γ0, then t̃k = 0; there is at most

one cluster k such that tk = γ0 and yet 0 < t̃k < γ0, so that for other clusters l,

if tl = γ0 then t̃l = 0 or γ0; and if tl > γ0 then t̃l = tl.

(ii) The γ0 of (i) is the largest γ such that
∑

k∈C,tk<γ
tk ≤ a.

Writing r0 for a−
∑

k∈C,tk<γ0
tk and N0 for #{k : tk = γ0}, the maximum variance

among compatible hypotheses [tc = t̃∗c ] such that
∑

I ti − t̃∗ci = a is given by Var(t; a) =

n[1− n/N ]s2(t; a), where s2(t; a) = ∑
k:k 6∈C,
tk<γ0

t2k + (N0 − 1− br0/γ0c)γ2
0 + (γ0 − (r0 − γ0br0/γ0c))2+

∑
k:

γ0<tk

t2k

 /(N − 1)− N

N − 1

(∑
k tk − a

N

)2

. (1)

For a proof, see the Appendix.

2.2 Addressing assignment by household in the Vote 98 ex-

periment

We use Proposition 2.1 to infer the effect of in-person GOTV on New Haven voter

turnout.

Of 23,450 households randomized to treatment conditions, 4.7% were dropped from

the rolls in 1998; individuals in these households are excluded from our analysis. One in

five of the remaining households were selected for personal canvassing, and canvassers

succeeded in making contact with 30% of these. Households to which personal appeals
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had been directed enjoyed a higher turnout rate in the 1998 election, 47.4%, than than

did their counterparts assigned to control, 44.7%; this difference is either a rare event or

evidence against the null (p = .007, two-sided). Null hypotheses attributing some of the

treatment group’s votes to personal canvassing fare better, with p-values increasing to

.331 at A = 92 and .340 at A = 93. (More specifically, compatible hypotheses [tc = t̃c]

with
∑
ti − t̃c = 92 give two-sided p-values ranging from .329 up to .331, entailing

a p-value of .331 for the composite hypothesis [A = 92]; and p-values for compatible

asserting
∑
ti − tc = 93 range from .338 to .340, so the p-value of [A = 93] is .340.)

These p-values continue to increase with increasing A, up to a maximum of .997 for

[A = 144], until declining to cross 1/3 again at A = 196. A 2/3 confidence interval

runs from 93 up to 195, or 5.0 to 10.4% of members of contacted households, and the

best single estimate of its effect is 144 votes, or 7.7% of such subjects.

3 Stratified randomization

Consider now treatments assigned to simple random samples of individuals or clusters

of individuals from each of S strata. (In voter mobilization studies, strata might be

precincts or districts, while clusters might be households or city blocks contained in

the strata.) To appraise hypotheses [A = a], about totals of treatment effects, we

must appraise all compatible stratum attributions, stratum-wise specifications [A1 =

a1, . . . , AS = aS] of treatment effects describing at least one compatible hypothesis

[tc = t̃c], such that
∑

s as = a, sustaining [A = a] at level α if any stratum attribution

consistent with it is sustained at level α. Writing Us for the indices of clusters in

the sth stratum, the test statistic for [tc = t̃c] becomes
∑

s

∑
I∩Us

t̃ci, with null mean∑
s E
(∑

j∈(I∩Us)
t̃cj

)
and variance

∑
s Var

(∑
j∈(I∩Us)

t̃cj

)
. The statistic itself and its

expectation are functions of y and of (a1, . . . , aS) =
(∑

I∩Us
ti − t̃ci : s

)
. We write the

difference of the two as

d(t, I; a) = d(t, I)−
∑

s

(1− ps)as,

where d(t, I) =
∑

s

∑
I∩Us

tci −
∑

s E
(∑

I∩Us
tcj
)

is the difference of observed and

expected under the strict null of no effect, [yc = y], and ps = ns/Ns is the chance of

assignment to treatment in stratum s.

Although y and (as : s ≤ S) do not suffice to determine the null variance, Propo-

sition 2.1 applies separately to each stratum s to identify the largest Var
(∑

I∩Us
t̃cj
)

that is compatible with as =
∑

I∩Us
ti − t̃ci, as well as a compatible configuration

10



(t̃ci : i ∈ Us) that attains this maximum. Concatenating these variances gives a single

specification (t̃ci : i ∈ U = ∪sUs),
∑

I∩Us
ti − t̃ci = as for every s, with the properties

that [tc = t̃c] is compatible and is rejected at level α iff every compatible [tc = t̃∗c ] such

that
∑

I∩Us
ti − t̃∗ci = as, all s ≤ S, is also rejected. Finding this [tc = t̃c] and testing

it is thus a recipe for testing the stratum attribution [A1 = a1, . . . , AS = aS] (more

briefly [A = a]). Write Var(t; a) for Var
(∑

j∈I t̃cj

)
.

3.1 Example with two strata

Imagine now that in addition to the clustering described in Table 2, Adams and Smith’s

cohort had been randomized separately within two strata. Suppose stratum 1 contains

250, 50 and 20 households i for which ti = 0,1 or 2, respectively, with 100, 25 and 10 of

these belonging to the treatment group, with remaining households in stratum 2. For

simplicity, assume all treatment-group households complied with treatment. As before,

a hypothesis [A = a] determines the test statistic,
∑

I t̃ci =
∑

I ti − a; but now the

statistic’s null expectation as well as its variance vary among the simple hypotheses of

which [A = a] is comprised. To fix E
∑

j∈I t̃cj, partition [A = a] into a+ 1 hypotheses

[A1 = 0, A2 = a], . . . , [A1 = a,A2 = 0]. Among hypotheses [tc = t̃c] within any one

of these, E
∑

j∈I t̃cj takes a single value. Still Var
(∑

j∈I t̃cj

)
= Var

(∑
j∈(I∩U1) t̃cj

)
+

Var
(∑

j∈(I∩U2) t̃cj

)
may take multiple values, but its maximum,Var(t; a), is given by

applying (1) separately in each of the two strata, and to test a composite [A = a]

one needs only to test the embedded simple hypothesis having the largest variance.

For [A = 20], one gets z-values increasing from 2.00 up to 2.15 for [A1 = 20, A2 = 0],

. . . ,[A1 = 0, A2 = 20], giving an overall p-value of 2(1 − Φ(2.00)) = .045. In similar

fashion, [A = 21] gets a p-value of .051. [A = 119] decomposes into [A1 = 45, A2 = 74],

. . . ,[A1 = 0, A2 = 119] (stratum 1 has only 45 treatment-group subjects who voted,

which limits the number of possible attributions to it) and z-values again increase, from

−2.42 up to −1.97, entailing a two-sided p-value of 2Φ(−1.97) = .049 for [A = 119].

Likewise, the p-value for [A = 118] is .054; a 95% CI is [21, 118].

3.2 Stratified analysis via separability

When S = 2, an total effect hypothesis [A = a] comprises no more than a stratum

attributions [A = a], but the number of stratum attributions falling under [A = a]

grows quickly with the sample size and the number of strata. With, say, five strata

containing 500 or more compliers each, more than 2.7 billion stratum attributions fall
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under [A = 500]. A means of deciding whether any of these are sustained at a given

level without explicitly testing each of them is desirable.

Rosenbaum (2002a), building on work of Gastwirth et al. (2000), proposes an easily

implemented algorithm, the separability algorithm, to test [A = a] in matched obser-

vational studies — studies with many strata. We extend this approach to stratified

but not matched designs — studies with few strata. To translate it to this setting,

suppose that a one-sided level-α test of [A = a] against the alternative [A > a], α < 1
2
,

is required, so that rejection of [A = a] requires rejection of all compatible hypotheses

[A = a] such that
∑

s as = a, when tested against [A > a]; i.e. [A = a] is rejected only

if z(a) =
(∑

I t̃ci − E
∑

j∈I t̃cj

)
/Var(t; a)1/2 > z1−α for all such a (where Var(t; a) is

as defined in Proposition 2.1). The separability algorithm aims to identify a particular

a whose z-score z(a) approximates m(a) = min{z(a) : [A = a] is compatible, a′1 = a}
well enough to decide acceptance of [A = a] by whether z(a) ≤ z1−α. Write As =

#(Us ∩ C) and A = (A1, . . . ,AS), so that m(a) = min{z(a) : 0 ≤ a ≤ A, a′1 = a}.
(For two-sided tests of level α, apply two one-sided tests of level α/2.)

The separability algorithm first narrows attention to those a = (a1, . . . , aS) which

minimize d(t, I; a) subject to a′1 = a and 0 ≤ a ≤ A. Since d(t, I; a) = d(t, I) −∑
s(1− ps)as, this only means setting as = As, for s such that ps exceeds a threshold,

and at = 0 for pt falling under the same threshold. If the set of stratum attributions

minimizing d(t, I; ·) is a singleton, {a}, then its member is the separability solution.

There are multiple minimizers of d(t, I; a) only if two or more strata s1, . . . sk have

ps1 = · · · = psk
, while a falls between

∑
(At : pt < ps1) and

∑
(At : pt ≤ ps1). To

break such a tie, the separable algorithm selects as1 , . . . , ask
so as to maximize the

contributions to Ṽar(t; a) from strata s1, . . . , sk, subject to 0 ≤ asi
≤ Asi

, i = 1, . . . , k,

and
∑

i asi
= a −

∑
(At : pt < ps1). Thus the selected a minimizes the magnitude of

z(a) among a∗ minimizing d(t, I; a∗) subject to constraints. The separability algorithm

then rejects [A = a] at level α if z(a) > z1−α.

This separable optimization is simpler than direct minimization of z(a) subject

to 0 ≤ a ≤ A and a′1 = a, or “joint optimization” (Gastwirth et al. 2000), and

unlike joint optimization it is always computationally feasible. Ideally the separable

and joint optima, z(a∗) and m(a), coincide, or differ by very little, but there are cases

in which they meaningfully differ; in such cases, tests based on separable optimization

may exceed their nominal levels. Gastwirth et al.’s Proposition 1 protects separable

optimization from this shortcoming in matched designs with large samples; what of our

stratified but unmatched design?
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3.3 Large-sample theory for stratified designs

New theory is needed for unmatched samples with a limited number of strata. The

proposition to follow covers this case as well as Gastwirth et al.’s, showing that in

sufficiently large samples the separable optimum z-score coincides with the joint op-

timum. We invoke a triangular array of assignment units, here clusters. For studies

κ = 1, 2, . . ., let the subjects be arranged in Nκ clusters, growing in number with-

out limit but uniformly bounded in size. These clusters sit in strata Uκ1, . . . , UκS,

within the sth of which nκs of Nκs clusters are assigned to the treatment group, Iκ,

of which a subset Cκ complies with treatment. The vectors t
(s)
κ record cluster totals

of responses in stratum s of study κ, and their concatenation is tκ. The largest possi-

ble total of effect attributions in Uκs,
∑

Uκs∩Cκ
t
(s)
κi , is denoted Aκs, and Aκ stands for

(Aκ1, . . . ,AκS). Write pκs = nκs/Nκs, Ψ = {pκs : κ = 1, 2, . . . , 1 ≤ s ≤ Sκ}, ψl = inf Ψ,

ψu = sup Ψ; ∆ = {pκs − pκt : pκs > pκt, κ = 1, 2, . . . , 1 ≤ s, t ≤ Sκ}, δ = inf ∆; and

Σ̃ = {s̃2(y
(s)
κ ; a) : κ = 1, 2, . . . , s = 1, . . . , Sκ, 0 ≤ a ≤ Aκs}, and σ̃2 = inf Σ̃.

Proposition 3.1 Assume δ, σ̃ > 0; 0 < ψl, ψu < 1. Suppose 0 < α < 1/2, and level-α

tests of hypotheses [A = a] against [A > a] (or against [A < a]) have acceptance

regions of form d(t, I; a)/Var(t; a)1/2 ≤ z1−α (respectively, d(t, I; a)/Var(t; a)1/2 ≥ zα).

Then there exists κ0 such that for all κ > κ0 and compatible [A = a], any separable

optimizer a∗ of [A = a] against [A > a] (respectively, [A < a]) is such that [A = a∗] is

rejected at level α if and only if all compatible [A = a] such that
∑

s as = a are rejected

at level α.

A proof of Proposition 3.1 is given in the Appendix. For the Adams and Smith

study, as recast in § 3.1, (p1, p2) = (.42, .52), and the joint optimizers found in §3.1 are

the same stratum attributions that separable optimization would have produced. Is

this also true of the New Haven experiment?

3.4 Telephone and Mail GOTV effects via separable optimiza-

tion

To test hypotheses about effects of telephone calls, we consider the sample as stratified

by assignment to in-person GOTV, yes or no, and by the number of direct mailings

sent to a household, 0, 1, 2, or 3; this gives 8 strata. For hypotheses about the effects

of mail, we use the 2×2 stratification in terms of (attempted) in-person and telephone

GOTV. Testing hypotheses that no votes are attributable to these treatments requires

testing only one simple hypothesis for each treatment; for neither of these treatments
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can this hypothesis be rejected at conventional levels (p = .64 and .37, respectively,

two-sided). Tests of hypotheses [A = a], a > 0, require separable or joint optimization.

In order to get two-sided hypothesis tests from one-sided tests, as in Proposition 3.1,

say that [A = a] is rejected at level α if for all compatible [A = a] such that a′1 = a,

[A = a] is rejected when tested at level α/2 against [A ≥ a], or if all such [A = a]

are rejected in level α/2 tests against [A ≤ a]. Tested in this way at the 2/3 level,

hypotheses attributing A = 1, 2, . . . , 35 votes to telephone intervention are sustained,

as for each of them the separable optimization gives at least one stratum attribution

whose z-statistic falls above z1/6 = −.96742 (as well as many that fall below z5/6).

For [A = 36], the largest z-statistic the routine locates is z = −.96744, just below

z1/6. Assuming the sample is large enough that 3.1 applies, every stratum attribution

falling under [A = 36] has a z-statistic less than z1/6, entailing rejection of the composite

hypothesis. The 2/3-confidence interval extends from zero up to only 35 votes; with

2/3 confidence, fewer than 2.2% of GOTV calls generated a vote.

For the mail intervention, [A = 0] is also within the 2/3 confidence interval. The

upper end of the confidence interval is much larger, 652 votes; since 11,200 households

were sent a mailer, this translates to an upper limit of 5.8% of mailed households’

having someone who voted because of the mailing. Again, this statement holds with

2/3 confidence, and also assumes that the sample is large enough for Proposition 3.1

to apply.

4 Adding covariates for precision

So far we have estimated GOTV effects for the in-person treatment using only treat-

ment assignment, compliance and outcome data, but ignoring potentially quite infor-

mative covariates. Besides outcome and intervention data, Gerber and Green collected

demographic information from voter rolls, specifically voters’ ages, wards of residence,

and whether they were members of a major political party, along with their registration

status and voting in the November election two years before. These data are powerful

predictors of future voting, and the estimation procedure shouldn’t ignore them.

A convenient model to relate voting, V , to demographic characteristics, D, and

household (H) is

logit(P(V |D,H)) = l +Dβ + γH , (2)

where l is an election-specific intercept and γH ∼ N(0, σ2) is a household-specific

random effect. To make use of data from several elections, one could add individual
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Figure 1: Fitted 1996 voting probabilities, conditional on ward (separate lines), age,
and membership in a major political party (solid lines for members, dotted for nonmem-
bers). The marked differences between curves reflect the covariates’ high prognostic
value. For example, people living in Ward 19 were predicted to vote with very high
probability, both young and old, whereas subjects in Ward 30 were generally unlikely
to vote. Ward 19 is roughly coterminous with the affluent Yale faculty neighborhood of
Prospect Hill, while Ward 30 sits in the poorer West Rock neighborhood, where nearly
half of households earned less than $10,000 as of Census 2000.
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random effects to the model and fit it to the available elections simultaneously; Gerber

and Green collected data on just one prior election, however, so we do not pursue

this here. Fit to voting and demographic data from a prior election or elections, the

model produces fitted probabilities P̂(V |D,H) that smooth subjects’ binary voting

indicators, borrowing information from demographically similar subjects to appraise

the certainty that their voting behavior would turn out as it did. Figure 1 plots age

against fitted 1996 voting probabilities given ward of residence, age, and major party

membership, demonstrating pronounced geographic and generational trends.

To estimate (2), we restrict our sample to the 24,300 subjects who were registered in

New Haven as of the previous election. To create D, we expanded the age variable into

natural cubic splines with knots at quintiles of the age distribution, included indicator

15



variables for the 29 wards represented in the study, and added major party membership

as another indicator variable; then we included also first-order interactions of these.

This expanded covariate basis had a few hundred elements, less than a hundredth of the

overall number of study subjects. The mixed logistic regression model accommodated

overdispersion and was fit by the Laplace method, using the lmer function from Bates

and Maechler’s “Matrix” package (2006) for R. The fit yielded covariate coefficients

and, for each household with a voter registered for the previous election, a random

deviation from the overall intercept. To obtain 1996 voting probabilities for all subjects

on the rolls at the 1998 election, households without a voter registered in New Haven

in 1996 were assigned a deviation of zero.

Because overall turnout varies systematically between presidential and midterm

elections (Rosenstone and Hansen 1993, p.57), it would be incorrect to use these as

probabilities of voting in an upcoming election; but if (2) is generally correct, then

the sum Dβ + γH is a sufficient statistic with which to predict voting in an upcoming

cycle, a prognosis score (Hansen 2006b). On the other hand, were we to misspecify

the prognostic model, or otherwise poorly estimate its score, we would introduce no

marginal bias, nor jeopardize the legitimacy of randomization-based tests: the potential

penalties are conditional bias, and deficits of efficiency relative to inference based upon

better estimated scores.

These individual-level prognosis scores were used to subclassify the sample of house-

holds. After splitting on household size, into one- and two-voter households, we parti-

tioned the sample of one-voter households at the quintiles of its prognosis scores, and

partitioned two-voter households first at teriles of household mean prognosis scores,

then within each terile at the median of within-household ranges of scores. The re-

sulting 11 prognostic subclasses were then crossed with the complementary treatment

subclassifications, leaving in the case of the telephone experiment, for example, an

11 × 2 × 4-way cross-tabulation, prognosis score by in-person assignment (treatment

or control) by number of mailings sent (0,1,2, or 3). The in-person experiment is also

given a 11 × 2 × 4-way subclassification, prognosis on telephone on mailings, while

the mail experiment was given a 11 × 2 × 2-way prognosis by telephone by in-person

assignment subclassification. We then proceed with inference for each experiment as if

its treatment had been assigned to simple random samples within each of the resulting

subclasses, rather than to random samples within the more coarse subclassification

along complementary treatments. This amounts to narrowing I, the set of potential

treatment assignments to which the actual treatment assignment I is to be compared,

to a class of assignments relatively similar to I in terms of the prognostic comparabil-
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ity of their treatment and control groups – a step consonant with the conditionality

principle (see e.g. Barndorff-Nielsen and Cox 1994, ch. 2).

Type of Point CIs
GOTV Estimate 2/3 95%

phone 0 0 to 2 0 to 5
mail 2 0 to 7 0 to 9
in-person 9 6 to 13 3 to 16

Table 3: Votes attributable to GOTV interventions, per 100 contacts. These inferences
stratify on prognosis scores and complementary treatments.

Table 3 gives 2/3 and 95% confidence intervals derived by this method, in terms

of votes per contacted household. While the confidence intervals overlap, the results

clearly suggest an ordering of effectiveness of the interventions, with personal canvass-

ing the most and telephone GOTV the least effective.

A comparison with confidence intervals that would have been obtained without the

additional subclassification demonstrates the benefit of prognosis scoring. Without it,

2/3 and 95% interval estimates of the in-person benefits would have been 12 and 16%

wider, respectively. Before comparing widths of intervals for mail and telephone effects,

for intervals that meet 0 we substitute twice the upper half-width, or distance from the

point estimate to the confidence interval’s upper limit, for their lengths, recognizing

that the intervals have been limited a priori to nonnegative values. By this measure,

prognosis scoring improves 2/3 and 95% intervals for the telephone effect, and 2/3 and

95% intervals for mailer effects, by 3%, 10%, 17%, and 2%, respectively.

5 Validating the result of separable optimization

In marked contrast with both Imai’s and Gerber and Green’s inferences, ours have

assumed little other than that the households were properly randomized. However,

since we have relied on assumptions about large sample sizes , one might worry that

our analysis has traded uncertainty about assumptions for uncertainty as to whether

asymptotics apply. To remove this remaining uncertainty, this section explains a way

to check whether the separable and joint optimizers coincide, and to bound the dis-

crepancy between them if they do not, without relying on a large-sample justification.

It is more technical than previous sections, and readers not concerned with this issue

should skip it.
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5.1 Testing [A = a] as a convex minimization problem

Among compatible hypotheses [tc = t̃c] falling under the composite hypothesis [A = a],

the supremum of Var
(∑

j∈I tj

)
is Var (t; a) =

∑
s ns(1 − ns/Ns)s

2(t(s); as), where

t(s) = (ti : i ∈ Us) and s2(t; a) is as in (1). Since all such [tc = t̃c] share the same value

d(t, I; a) of
∑

I t̃ci − E
∑

i∈I t̃ci, we accept [A = a] in a level-α test against [A ≥ a],

α < 1
2
, if and only if

g(t; a) = max(0, d(t, I; a))2 − z2
1−αVar(t; a), (3)

where Var(t; a) =
∑

s ns(1 − ps)s
2(t(s); as), falls at or below 0. By extension, [A = a]

is accepted at level α if and only if the minimum of g(t; ·), constrained by
∑

s as = a

and 0 ≤ a ≤ A, falls at or below 0. What sort of function is g(t; ·)?
a 7→ d(t, I; a)2 has a positive-definite Hessian, 2{(1− ps)(1− pt) : s, t ≤ S}, and is

convex; and the set of a for which d(t, I; a) ≤ 0 is convex. Thus the first term of (3)

is convex in a. However, a 7→ s2(t(s); a) is neither convex nor concave, with the result

that g(t; ·) is not generally convex. This complicates its minimization. We endeavor to

replace g with a close, convex approximation.

The quantities s2(t(s); as) contributing to g are closely bounded above (since the

third term of (1) has form γ2
0x

2, |x| < 1, and is ≤ γ2
0x) by s̃2(t(s); as) =

1

(N − 1)

 ∑
k∈Us:k 6∈C,

tk<γs

t2k +

(
Ns −

rs

γs

)
γ2

s +
∑
k∈Us:
γs<tk

t2k

− N

N − 1

(∑
k∈Us

tk − a

N

)2

,

with (γs, Ns, rs) depending on (t(s), as) as (γ0, N0, r0) depend on (t, a) in (1). These

functions s̃2(t(s); ·) are continuous, piecewise quadratic and concave. Consequently

g̃α(t, I; a) = max(0, d(t, I; a))2 − z2
1−αṼar(t; a), (4)

where Ṽar(t; a) =
∑

s ns(1 − ps)s̃
2(t(s); as), is convex in a. At the same time, g̃α(t; a)

bounds g from above, and should do so closely. (For tests of [A = a] against [A ≤ a],

substitute min(0, d(t, I; a)) for max(0, d(t, I; a)) in (3) and (4).)

Although in principle using g̃ rather than g to delineate confidence regions can lead

to wider intervals, in the Vote 98 study it does not. Evaluated at the 12 separable

optimizers a of total effect hypotheses [A = a], for a just inside the boundaries of

the 2/3 and 95% CIs given in Table 3 — at the most nearly rejected of those stra-
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tum attributions that we tested but did not reject at levels 1/3 and .05 — Var(t; a)

and Ṽar(t; a) very nearly coincide, with the consequence that gα(t, I; a) and g̃α(t, I; a)

are for practical purposes the same. The differences are small enough as to produce

differences no larger than 2× 10−5 in Normal approximation p-values calculated from

z(a) = Var(t; a)−1/2d(t, I; a) and from z̃(a) = Ṽar(t; a)−1/2d(t, I; a), occasioning no

change to Table 3.

In sum, a valid test of [A = a] rejects if the minimum of g̃α(t, I; a), constrained

by
∑

s as = a and 0 ≤ a ≤ A, is positive. The test is similar to, if potentially more

conservative than, tests based on whether unmodified z-statistics Var(t; a)−1/2d(t, I; a)

fall within level-α acceptance limits. Applied to the Vote 98 study, these tests give

only negligibly different results.

5.2 Comparing separable and joint optima

Proposition 3.1 continues to hold if Var(t; a) is replaced with Ṽar(t; a); in sufficiently

large samples the modified z-statistic can also be separably optimized. The modifica-

tion is advantageous when the sample is not known to be sufficiently large, because

since g̃α(t, I; ·), unlike gα(t, I; ·), is convex, its joint optimization is tractable: since the

constraint space is also convex, g̃’s local minima are also global minima.

Even with separable optimization, which may be more convenient than joint opti-

mization, convexity of g̃ helps. By checking whether a separable optimizer a attains

a local minimum of g̃p(a)(t, I; ·), where p(a) is the p-value of [A = a], one can deter-

mine conclusively whether it is a joint optimizer. If the separable optimizer is also a

joint optimizer, then its acceptance or rejection decides that of [A = a], a =
∑

s as; if

not, then it can be used as a starting point for optimization of g̃α(t, I; ·), or combined

with derivatives in order to linearly approximate g̃α(t, I; ·) from below. (The necessary

derivatives are given by Lemma 6.1.)

Table 4 uses this refinement technique to bound from above the jointly optimized p-

values of those a that fall just above 95% CI limits obtained by separable optimization.

Only upper boundaries of the 95% CIs are shown because just outside of the lower limits

of the separable 95% interval, and just outside either end of the separable 2/3 intervals,

separably and jointly optimized p-values coincide. Of the CI limits reported in Table 3,

refinement changes only the upper limit of the 95% interval for mail, extending it by 9

votes, or .1 votes per 100 households mailed.

In sum, confidence intervals produced by inversion of separably optimized hypoth-

esis tests may be anti-conservative. With additional effort on the part of the analyst,
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p-values
Intervention a = separable upper bound
phone 96 .02415 .02426
mail 1060 .02483 .02686
in-person 227 .02391 .02432

Table 4: Separable p-values and their refinements, at the upper boundaries of the 95%
(two-sided) confidence intervals reported in Table 3. The separable p-values are one-
sided, assessing a hypothesis [A = a∗] against [A ≤ a∗], where a∗ is the separable
optimizer for tests of [A = a] against [A ≤ a]; the next column refines these to obtain
upper bounds for the maximum of p-values for [A = a] against [A ≤ a] when a ∈ {0 ≤
a ≤ A, a′1 = a}. Of the upper and lower limits of 2/3 and 95% CIs for each of the
three intervention effects, refinement increases only the upper limit of the 95% CI for
mail (from 1059 to 1068).

this anti-conservatism can be replaced with a milder conservatism, slightly overestimat-

ing tests statistics’ variance in the interests of simplifying joint optimization. Doing so

with the Vote 98 study prompts very small revisions to confidence intervals.

6 Discussion

6.1 Methodology

Imai’s re-analysis involved a propensity score matching of complying treatment group

members to controls. In their response, Gerber and Green (2005a, pp.307–308) suggest

that Imai’s use of propensity scores caused his to conclusion to err. If his method is

mistaken — more on this presently — then we believe a more likely mistake is his

premise that contacted and noncontacted voters’ potential outcomes are the same,

conditional upon covariates. It makes his a form of “as-treated” analysis, which is

known to perform unreliably in medical contexts (Lee et al. 1991). Using Gerber and

Green’s originally released replication archive, which did not include household iden-

tifiers, Bowers and Hansen (2005) propensity matched the New Haven study subjects

who were and were not assigned to the various GOTV treatments, treating assignment

as an instrument for receipt of treatment in the subsequent analysis. Results of their

analysis closely resembled those obtained here; see also Hill et al. (2000) for discussion

of the use of propensity scores in experiments.

Several facets of our methodology merit discussion. The tests and p-values that

we have presented are not exact, even those that pertain to simple hypotheses, as
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they depend on an asymptotic Normal approximation. However, they more closely

approximate exact p-values than do many large-sample p-values, since they are based

on exact, not estimated, variances; see Hansen (2006a) for confirmation of this in

simulation experiments. By the Berry-Esseen principle for simple random samples

(Höglund 1978), the error of the Normal approximations on which these simple tests

are based converges uniformly to zero as the sample size increases. It follows that the

error of our tests of composites [A = a] vanishes in large samples also.

Our analysis considered only hypotheses compatible with nonnegativity, y ≥ yc.

A pronounced failure of nonnegativity, for instance nonpositivity (y ≤ yc) coupled

with a sizable negative effect attributable to treatment, would lead to rejection of each

nonnegative hypothesis, making the confidence interval empty. Had that result been

obtained, we could have then tested hypotheses assuming nonpositivity, culminating

in a confidence interval for a negative effect. Observe that this procedure does not

risk swelling type I errors because of multiple comparisons, since the nonnegative and

nonpositive hypotheses are mutually exclusive.

Section 4’s covariate adjustment strategy is not necessarily the most efficient possi-

ble. Another form of covariate adjustment would appraise null hypotheses [yc = ỹc] by

fitting (2) to pre-experimental data and to the hypothesized outcomes ỹc, and would

then decide the hypothesis using a randomization test of similarity between control

and treatment groups’ residuals. Gail et al. (1996) test the strict null [yc = yobs] in this

way; Rosenbaum (2002b) and Raab and Butcher (2005) discuss adjustments of this

type for studies with continuous outcomes, where the model of a constant treatment

effect may be appropriate. We experimented with adapting this approach to estimation

of attributable effects, finding it to be delicate, at times widening confidence intervals;

using different methodology, Nixon and Thompson (2003) also find that covariance

adjustment need not increase power in group randomized trials. Hansen (2006b) gives

prognosis scoring strategies that make use of control-group outcomes, but these carry

the possibility, at least in principle, of introducing bias, making them less suitable for

our aim of resolving the methodological dispute over the Vote 98 study. More research

is needed to determine which methods most reliably and effectively leverage covariates

for increased precision in research designs of this type.

The attraction of § 4’s use of prognosis scores is that it is equally applicable to

study analysis and design. We used it for analysis, estimating a prognosis score ex post

facto and then poststratifying the sample; but since our fit used only data from prior

elections, precisely the same score could have been estimated ex ante and used in a

block-randomized design. Such a design could have enjoyed a greater efficiency benefit.
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6.2 Revisiting the Vote 98 controversy

Using model-based methods, Gerber and Green (2000) produced 95% confidence inter-

vals of 5 to 14 percent increases in turnout among contacted voters, for direct face-to-

face appeals, but 8 to 0 percent decreases in turnout among voters contacted by tele-

phone; a revision accounting for clustering (Gerber and Green 2005a) slightly widened

these confidence intervals and shifted them toward zero. Imai’s (2005) analysis gave

similar results for face-to-face contact but found telephone entreatments to increase

turnout, with a 95% CI of 1 to 13 percentage points. The finding of a benefit for phone

GOTV has a precedent in earlier literature on canvassing by telephone (Eldersveld

1956; Miller et al. 1981), although experiments conducted since the mid-1990s, when

survey organizations began to see steep declines in telephone response rates (Curtin

et al. 2005), have been unable to replicate it (Gerber and Green 2005b).

Imai’s adjustment assumes that conditional on available covariates, compliers’ like-

lihood of voting equals non-compliers’. Acknowledging that this premise is open to de-

bate, he maintains his adjustment to be “certainly more appropriate than the method

of instrumental variables used by Gerber and Green” (2005, p.295). This claim has

been favorably received among at least some political professionals. Grenzke and Watts

(2004), for example, write approvingly that Imai’s article “corrects errors in Green and

Gerber’s 1998 New Haven study and finds that even with weak, nonpartisan scripts,

phones increased turnout,” alluding to unspecified “post-election analysis” in support

of telephone GOTV.

Our randomization analysis speaks more directly to the question of which of Gerber

and Green’s (2005a) and Imai’s (2005) corrections of the earlier analysis by Gerber and

Green (2000) is more correct, estimating the same quantities without making either of

the later papers’ assumptions. Imai’s claim is mistaken; results of the randomization-

based analysis are in accord with Gerber and Green’s, and certainly contradict those of

the propensity analysis without the instrumental variable. Its 95% CI for the in-person

benefit contains and slightly widens Gerber and Green’s; more important, it allows no

more than 5% of voters contacted by telephone to have turned out because of the call.

With this, results of recent telephone canvassing experiments are definitive. The era

of anonymous telephone mobilization has passed.
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Appendix

Proof of Proposition 2.1

Consider first that among compatible hypotheses [tc = t̃c] such that
∑

i∈I ti − t̃ci =∑N
k=1 tk − t̃ck = a, only the

∑
k t̃

2
ck term on the right of

Var(
∑
j∈I

t̃cj) = n

(
1− n− 1

N − 1

)∑N
k=1 t̃

2
ck

N
−

(∑N
k=1 t̃ck
N

)2


may vary. Second, the existence of a γ0 as in the proposition is logically equivalent to

the statement that there is no pair l, k ≤ N such that 0 < t̃l, t̃k < tl. Third, if such a

pair existed, then
∑

k t̃
2
ck would not be at its largest subject to

∑N
k=1 tk − t̃ck = a and

compatibility constraints: ensure that t̃k ≤ t̃l, by switching k and l if need be; then

construct t̃∗cm such that t̃∗cl = min(t̃cl + t̃ck, tl), t̃
∗
ck = max(0, tl− t̃cl− t̃ck), and t̃∗cm = t̃cm,

for m 6= l, k. Then t̃∗cl > max(t̃ck, t̃cl), so that (t̃∗ck)
2 + (t̃∗cl)

2 > (t̃ck)
2 + (t̃cl)

2, and

consequently
∑

k (t̃∗ck)
2 >

∑
k t̃

2
ck. This establishes (i); the remainder of the proposition

follows.�

Proof of Proposition 3.1

First, a lemma. Write δi for the unit Sκ-vector with 0’s in all but the ith position.

Lemma 6.1 h̃κ(a) = Ṽar(tκ; a) has directional derivatives

∂h̃κ(a; δi) = Cκi

[
2

(
t̄κi −

aκi

Nκi

)
− γ(i, κ, a)+

]
,

−∂h̃κ(a;−δj) = Cκj

[
2

(
t̄κj −

aκj

Nκj

)
− γ(j, κ, a)−

]
,

where Cκs = (nκs/Nκs)[1 − (nκs − 1)/(Nκs − 1)], t̄κs =
∑

k∈Uκs
t
(s)
κk/Nκs, γ(s, κ, a)

+ =

max{γ :
∑

[tκk : k ∈ C, tκk < γ] ≤ a} and γ(s, κ, a)− = max{γ :
∑

[tk : k ∈ C, tκk < γ] <

26



a}. Also hκ(a) = Var(tκ; a) has directional derivatives

∂hκ(a; δi) = 2Cκi

{(
t̄κi −

aκi

Nκi

)
− γ(i, κ, a)+

[
1−

(
r(i, κ, a)+

γ(i, κ, a)+
−
⌊
r(i, κ, a)+

γ(i, κ, a)+

⌋)]}
,

−∂hκ(a;−δj) = 2Cκj

{(
t̄κj −

aκj

Nκj

)
− γ(j, κ, a)−

[
1−

(
r(i, κ, a)−

γ(i, κ, a)−
−
⌊
r(i, κ, a)−

γ(i, κ, a)−

⌋)]}
,

where r(s, κ, a)+ = a −
∑

[tk : k ∈ C, tk < γ(s, κ, a)+] and r(s, κ, a)− = a −
∑

[tk :

k ∈ C, tk < γ(s, κ, a)−]. In particular, |∂hκ(a; δi)|, |∂hκ(a;−δj)|, |∂h̃κ(a; δi)|, and |∂h̃κ(a;−δj)|
are uniformly bounded, as are |∂hκ(a; δi − δj)| and |∂h̃κ(a; δi − δj)|.

Lemma 6.1 follows from the fact that s̃2(t
(s)
κ ; ·) and s2(t

(s)
κ ; ·) are piecewise differen-

tiable with

∂+

∂a
s̃2(t(s)κ ; a) = −γ(s, κ, a)

+

Nκs − 1
+

∗︷ ︸︸ ︷
2

Nκs − 1

(∑
k∈Us

t
(s)
κk

Nκs

− a

Nκs

)
,

∂+

∂a
s2(t(s)κ ; a) = −2γ(s, κ, a)+

Nκs − 1

[
1−

(
r(i, κ, a)+

γ(i, κ, a)+
−
⌊
r(i, κ, a)+

γ(i, κ, a)+

⌋)]
+ ∗,

∂−

∂a
s̃2(t(s)κ ; a) = −γ(s, κ, a)

−

Nκs − 1
+ ∗, and

∂−

∂a
s2(t(s)κ ; a) = −2γ(s, κ, a)−

Nκs − 1

[
1−

(
r(i, κ, a)−

γ(i, κ, a)−
−
⌊
r(i, κ, a)−

γ(i, κ, a)−

⌋)]
+ ∗,

which follow directly from the definition of s̃.

Turning to Proposition 3.1, its ‘if’ part is immediate. We prove the other implication

as applied to tests of [A = a] against [A > a]; its demonstration for tests of [A = a]

against [A < a] is analogous. For a > 0 let the Sκ-vector of positive integers a(a, κ)

be a separable optimizer. For Sκ-vectors a write z(a) for d(tκ, Iκ; a)/Ṽar(tκ; a)1/2.

We show that for sufficiently large κ, if [A = a(a, κ)] is rejected then a(a, κ) attains

the minimum of fa,κ(·) = g̃α(tκ, Iκ; ·) over {a : 0 ≤ a ≤ Aκ, a
′1 = a} =: Θ. Since

[A = a(a, κ)] is rejected, this minimum must then be positive, and [A = a] is rejected

for all a ∈ Θ.

From a(a, κ), any a∗ ∈ Θ can be reached by a path along line segments of the

form (a, a + δs − δt), where a(a, κ) + δs − δt ∈ Θ — i.e, δs − δt points inside of the

box {a : 0 ≤ a ≤ A} from a(a, κ). Also, we may chose the path so that any steps in

directions δs − δt such that nκs/Nκs = nκt/Nκt are taken first. We show that the net

change of fa,κ(·) along all of these first steps is nonnegative, after which we show that

each subsequent step results in an increase in fa,κ(·) (at least if κ is sufficiently large).
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For any (s1, t1), . . . , (sm, tm) s.t. nκsi
/Nκsi

= nκti/Nκti , each i, one has

fa,κ(a + δsi
− δti)− fa,κ(a) = z2

1−α [Var(tκ; a + δsi
− δti)− Var(tκ; a)] ,

all a and i, so that

fa,κ(a(a;κ)+
∑

i

(δsi
−δti))−fa,κ(a(a;κ)) = z2

1−α

[
Var(tκ; a(a;κ) +

∑
i

(δsi
− δti))− Var(tκ; a(a;κ))

]
.

But the separability algorithm has been so chosen a(a;κ) as to maximize Var(t; ·) over

a set of the form Θ ∩ {a : ∀p,
∑
{as : nκs/Nκs = p} = γp}; so this difference must be

positive.

Now consider the later steps δs − δt of the path, for which nκs/Nκs 6= nκt/Nκt. By

construction of a(a, κ), δs−δt points outside the box from a(a, κ) if nκs/Nκs > nκt/Nκt,

so we may assume nκs/Nκs < nκt/Nκt; by hypothesis, this difference is no smaller than

δ > 0. Also, coupled with the assumption that α < 1
2
, rejection of [A = a(a, κ)]

entails d(tκ, Iκ; a(a, κ)) > 0. Since the separable optimizer is so constructed that

d(tκ, Iκ; a(a, κ)) = mina∈Θ d(tκ, Iκ; a), this means d(tκ, Iκ; ·) is positive throughout Θ.

So the sign of ∂fa,κ(a;v) is the same as that of ∂fa,κ(a;v)/d(tκ, Iκ; a), for all a in the

convex closure of Θ. We show that for sufficiently large κ, ∂fa,κ(·; δs − δt)/d(tκ, Iκ; ·)
is positive on Θ.

Since a 7→ d(tκ, Iκ; a)2 has a total derivative, Lemma 6.1 entails that fa,κ has

directional derivatives in all directions, at each a and κ for which [A = a] is compatible.

From the lemma and (4), one has

∂fa,κ(a; δs − δt)

2d(tκ, Iκ; a)
−
[
nκt

Nκt

− nκs

Nκs

]
= −

z2
1−α

2d(tκ, Iκ; a)
∂h̃κ(a; δi − δj) (A-1)

Since [A = a(a, κ)] is rejected, z1−α ≤ z(a(a, κ)) and z1−α/d(tκ, Iκ; a(a, κ)) ≤ Var(tκ, a(a, κ))−1/2.

But Var(tκ, a(a, κ)) ≥ Nκ min(ψl(1 − ψl), ψu(1 − ψu))σ̃
2, so by assumption on σ̃ and

ψl, ψu, the left-hand side of (A-1) with a = a(a, κ) must be O(N
−1/2
κ ), uniformly in a

for which [A = a] is compatible. Recall that nκt/Nκt − nκs/Nκs ≥ δ > 0; thus if we

choose κ0 such that for κ > κ0, the left-hand side of (A-1) is uniformly smaller than δ,

then for κ > κ0 the sign of ∂fa,κ(a; δs−δt)/d(tκ, Iκ; a) will be that of nκt/Nκt−nκs/Nκs,

or +1.

This completes the proof. As the only properties of Var(tκ; a) it has depended

on were the uniform boundedness of its partial derivatives in a and its increasing as

O(Nκ) as κ ↑ ∞, it applies equally well when Ṽar(tκ; a) is substituted for Var(tκ; a)
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throughout, as in § 5.
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