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Abstract

This paper demonstrates that, while statements about specific patterns of interference are
required for causal inference, there is no single general “no interference assumption” that is
required in order to make meaningful statements about causal relations between potential out-
comes. A statement about “no interference between units” has long been seen as a fundamental
and untestable assumption that is a precondition for meaningful counterfactual causal inference
(Cox (1958, p. 19); Rubin (1980, 1986); Brady (2008)). This paper is a proof of concept:
We show that “no interference” need not constrain creative researchers who have interesting
questions about interference. In so doing, we offer researchers the ability to ask and formalize
questions about how treatment given to some units may come to influence outcomes for other
units: for example, how treatment may spillover from treated units to control units. We further
show that statistical inference about these causal effects is possible, and that the procedures for
producing p-values and confidence intervals about causally defined parameters have expected
operating characteristics. Finally, we offer some advice, conceptualization, and notation about
how to specify the models that represent ideas about how units and treatments might interfere.

The conceptual and methodological framework we develop here is particularly applica-
ble to social networks, but may be usefully deployed whenever a researcher wonders about
interference between units. Interference between units need not be an untestable assumption.
Rather, interference is an opportunity to ask meaningful questions about theoretically interesting
phenomena.
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1 Introduction
Randomization guarantees unconfounded comparisons and meaningful statistical inference

about causal effects. Yet, when those randomly assigned a control condition inadvertently receive

some of the treatment simple average treatment effects become difficult to conceptualize and may

systematically under- or over-state the unobserved average treatment effect on the treated (see, e.g.

Chen, Humphreys and Modi 2010). By common assumption, there is no treatment effect on the

controls. Because aggregating over unobserved and observed potential outcomes allows the use

of averages for statistical inference about causally defined quantities (Neyman 1923 [1990]), “no

interference between units” is thus often described as a foundational precondition for credible causal

inference (Cox (1958, p. 19); Rubin (1980, 1986); Brady (2008)). Averaging potential outcomes,

however, is only one way that one might use what we know to learn about what we do not know.

Fisher (1935) proposed the use of a sharp null hypothesis test of no effects for this purpose.

Whereas Neyman confronted the problem of causal inference by changing the focus of causal

inference from units to averages, Fisher approached the problem by specifying unit level hypotheses.

Whereas Neyman focused on estimation, Fisher focused on testing. In this paper we use Neyman’s

conceptualization of causal inference as comparison of unobserved counterfactuals, especially as it

has been developed by Rubin (see for example Rubin 2005; Little and Rubin 2000), but show that

Fisher’s approach allows us to ask questions about interference among units and produce statistical

inferences about substantively meaningful quantities parameterizing those questions. Our approach

builds on the work of Rosenbaum, as he has done the most to combine the Neyman and Rubin model

of causal effects with Fisher’s approach (see for example Chap 2 in both Rosenbaum 2010, 2002).

In fact, in this paper we show that “no interference” is not an assumption in Fisher’s framework,

but rather an implication that need not always hold.1 In fact, we already know that Fisher’s hypothesis

test can be shown to either enable detection of interference (Aronow 2010) or directly enable testing

a hypothesis of a particular kind of no effects under unspecified interference (Rosenbaum 2007). We

add to this past research showing that one may both directly hypothesize about interference between
1We thank Ben Hansen for this terminology. It may also be helpful to think of assumptions as

axioms and implications as theorems.
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units and may test such hypotheses.2

By posing hypotheses about interference and assessing them in Fisher’s framework for statistical

inference as developed by Rosenbaum (as linked to Neyman’s framework for causal inference as

developed by Rubin), our effort is different from, yet complements past and current efforts that have

mostly aimed at credible statistical inference despite interference or at the decomposition of average

treatment effects into parts that are “indirect” (spilled over or otherwise operating via interference) or

“direct” (i.e. not operating via interference).3 There are many variants of this approach, yet they all

involve a decomposition of average treatment effects into parts arguably due to interference and parts

not due to interference (with often very clever designs making such decompositions meaningful and

the variance calculations feasible and valid).

Two close precursors of our method are found in two quite different papers by Rosenbaum

(2007) and Hong and Raudenbush (2006). Rosenbaum (2007) enables the production of confidence

intervals for causal effects without assuming anything in particular about the form of interference

between units. The key to his approach is the idea that the randomization distribution of certain

distribution-free rank based test statistics can be calculated without knowing the distribution of

outcomes — i.e. can be calculated before the experiment has been run, when no unit at all has

received treatment. Rosenbaum (2007) thus successfully enables randomization-justified confidence

intervals about causal effects without requiring assumptions about interference. Our aim here,

however, is more akin to Hong and Raudenbush (2006). They used a multilevel model to estimate

the size of interference effects as they occurred between students nested within schools. We want
2Our RItools package for R (Bowers, Fredrickson and Hansen 2010) allows for fast, flexible

randomization based inference. All computation in this paper is carried out using a publicly available,

open-source, beta version of RItools. Appendix Appendix A provides a brief overview of how one

might actually execute our methodological proposals in current software.
3For only a few examples of this approach see McConnell, Sinclair and Green (2010); Sinclair

(2011); Nickerson (2008, 2011); Hudgens and Halloran (2008); Sobel (2006); Tchetgen and Vander-

Weele (2010); VanderWeele (2008a,b, 2009, 2010); VanderWeele and Hernan (2011); Miguel and

Kremer (2004); Chen, Humphreys and Modi (2010); Ichino and Schündeln (2011).
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to enable statistical inference about particular substantively relevant and theoretically motivated

hypotheses about interference and causal effects simultaneously. Hong and Raudenbush (2006) also

provide precedent for some of our work here in collapsing aspects of the interference into a scalar

valued function. We are not required to collapse the possible avenues of interference in this way, but,

in this, our first foray into asking questions about interference, such a simplification makes life much

easier. Chen, Humphreys and Modi (2010) provide another model in which Fisher’s randomization

inference for the sharp null of no effects is used; their sophisticated design assigns units to indirect

and direct effects in a controlled manner, and then a Neyman style randomization inference is used

to estimate average treatment effects to complement their Fisher style tests of the sharp null of no

effects.

This paper is a proof of concept that statistical inference about causally defined quantities is

possible when said quantities are defined to allow for interference between units. Other, perhaps

gold standard, approaches which begin at the design stage have been developed involving layered or

multilevel randomization such that one may, in essence, directly assign units to “indirect” or spillover

effects rather than direct effects (McConnell, Sinclair and Green 2010; Hudgens and Halloran 2008;

Chen, Humphreys and Modi 2010; Ichino and Schündeln 2011). Our ideas here would complement

those designs in that, as we hope will become clear, we would allow scholars to more precisely

specify mechanisms for both direct and indirect effects and to assess the support in the data for such

mechanisms. We do not offer design advice in this paper.

Finally, as a paper written by social scientists rather than by statisticians, this contribution is not

agnostic about the role of substantive theory in the enterprise of statistical inference about causal

effects. That is, this paper considers interference between units not as an assumption to be supported

with argument and evidence, or a nuisance to be detected and adjusted for, but as an implication

of social and political processes to be reasoned about and tested. The conceptual framework and

technology which allows us to engage so directly with interference is a consequence of Fisher’s

sharp null hypothesis (Fisher 1935) and subsequent developments linking Fisher’s original ideas

with contemporary formal frameworks for conceptualizing causal effects and establishing statistical

inferences. Our demonstrations here are meant as a proof of concept: statistical inference about
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causally meaningful quantities is possible even if we hypothesize about interference directly. A

consequence of this demonstration is that it shows that social scientific theory may contribute directly

to statistical inference via the specification of meaningful hypotheses whether or not they are about

interference.

1.1 Definitions: Assumptions, Implications and Interference

Before diving into the body of the paper, let us quickly elucidate a few important terms.

Two units can be said to interferewith each other when the potential outcomes of one unit depend

on treatment assigned to another unit. It follows that another definition (which is equivalent) is to say

that two units interfere when the potential outcomes of one unit depend on the potential outcomes

of another unit (since potential outcomes are defined as reactions to treatment assignment).

An assumption is a statement about a truth without proof. An implication is a condition following

from other decisions including assumptions. In statistics, we can often bring evidence to bear

regarding statements of assumptions, but, like hypotheses, assumptions are never proved. The line

between assumption and hypothesis can be blurry. For example some linear model analyses assume

y ∼ N(Xβ, σ2). Other, linear model uses assume only that the sample size is large enough and

observations are independent enough that Central Limit Theorem applies — and this assumption

implies the same sampling distribution for β̂ as that implied by the assumption about the Normality

of y: β̂ ∼ N(β, σ2(XT X)−1) (Achen 1982). A hypothesis test for some H0 : β = β0 may indicate that

β̂ would be very surprising from the perspective of the hypothesis (so surprising that we might want

to reject the hypothesis as entirely implausible). Yet even such information would not address claims

about the iid Normality of y or the speed of convergence of the sampling distribution to the Normal.

In this paper, we consider an assumption to be a condition necessary to create a valid test. If

a condition is not necessary, then it is part of a hypothesis. For example, in what follows we will

assume that treatment is randomly assigned according to the reports of the principal investigator of

a study, and from this assumption, implications about the shape of the reference distribution will

follow. We will show that Fisher’s framework allows one to directly assess hypotheses which imply

interference between units.
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1.2 Roadmap

We organize this paper around an applied example and a simulation study. To fix ideas and

develop notation we first analyze a small (n = 8) field experiment in which pairs of US cities were

randomly assigned to a get-out-the-vote newspaper advertisement (Panagopoulos 2006; Bowers and

Panagopoulos 2011). Then, to explore the operating characteristics of our proposal and to engage

with some interesting questions arising about models of hypotheses, we create a medium-sized

(n = 100) simulated social network experiment which allows us to show that we can recover “true”

treatment and spillover effects. We also use this simulation to explore the implications of using

models that do not exactly reproduce the data — i.e. “wrong” models. We close with a discussion

of how this framework enables the opportunity to ask new questions and more directly engage

with theory in an experimental context. We also provide an appendix in which we provide some

mathematical language in which to formalize such questions. Such a language becomes important

because a common impediment to reasoning about interference has been the sheer number of

possibilities that one must engage. Toward that end, we will echo Hong and Raudenbush (2006) in

advocating the imposition of structure on the problem:

Without imposing further structure, the sheer number of causal effects per subject

undermines any attempt to summarize evidence in a readily interpretable way. Moreover,

a shift in the treatment assignment of any subject changes the potential outcome of

any other subject, making it difficult to conceive of average causal effects or to frame

interesting questions for policy. (Hong and Raudenbush 2006, page 902)

2 Statistical Inference about Causal Effects in a Small Field Experiment
In a voter mobilization field experiment, Panagopoulos (2006) randomly assigned newspaper

advertisements within four pairs of similar cities during the 2005 Mayoral elections. We are

accustomed to thinking about the causal effect of such a turnout inducement in terms of a comparison

of two partially observed quantities: the turnout, or potential outcome, we would expect to see for

city i if that city were treated, Zi = 1, often written yZ=1,i ≡ yi,1 and the turnout we would expect if

treatment were withheld, yZ=0,i ≡ yi,0. If treatment had a causal effect for city i in this experiment
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then turnout after advertisements would be higher than turnout without advertisements: yi,1 > yi,0. If

treatment had no effect then city i would display the same turnout regardless of treatment condition

yi,1 = yi,0. Treatment could have been assigned differently, but the observed outcome would be

identical.

To formalize the idea that treatment may have been assigned within pairs differently than it

was, consider the set of all possible vectors of treatment assignment, Ω. Following Rosenbaum

(2002, Chap 2) we call an assignment vector drawn from this set z to distinguish it from our

observed random draw Z = {0, 1, 0, 1, 0, 1, 0, 1}. So, our shorthand of writing yi,1 is really saying that

yi,z={0,1,0,1,0,1,0,1} = yi,z={0,1,1,0,1,0,1,0} = . . . = yi,any other z. For example, if i = “Sioux City”, then, when

we write yi,1 we are saying that the counterfactual outcome under treatment for Sioux City would

be the same regardless of the configuration of assignments to any other set of cities. Or, potential

outcomes for Sioux City do not depend on the treatment assigned to any other unit. So, notice that

the notation that we use to express concepts about counterfactual causal inference implies something

about no interference: yi,zi=1,z−i = yi,zi=1,z′
−i
for all z, z′ ∈ Ω, z 6= z′. This manner of writing causal

effects encodes a decision to ignore the treatment assignment status of other cities. How sensible is

this decision?

●

● ●

●

●

●

● ●

Figure 1: Locations of cities in the US newspapers field experiment. Control cities plotted as open black
circles. Treated cities plotted as filled dark gray circles.

Figure 1 shows the locations of the cities chosen for the study. Sioux City is the gray dot alone in

the center of the map. Unless communication between Sioux City and other cities regarding political

advertisements is quite high, it seems reasonable to suppose that treatment assigned to other cities

did not interfere with potential outcomes in Sioux City (or Oxford, OH or Lowell, MA). However, we
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can see two places on the map where one might imagine newspaper advertisements could spillover

between cities: specifically the pairs Yakima-Richland in Washington and Midland-Saginaw in

Michigan where the dots are very close. Perhaps the idea of no interference is sensible for some

cities in this study and not for others.

To formalize the intuition developed from the map in Figure 1, we develop a mechanism for

causal inference in the presence of interference rooted in the work of Fisher (1935) and Rosenbaum

(2010, 2002). In the following sections we explain what we mean when we say that one may reason

about “no effects” from an intervention in the presence of possible interference. We then show how

this same logic can extend to reasoning about the functional forms and parameters of effects of more

substantively interesting models than the simple sharp null.

2.1 How can we write a hypothesis about ‘no effects and no interference’?

The map above suggested that treatment assigned to other cities probably did not interfere

with potential outcomes in Sioux City. If we wanted to consider the hypothesis of “no effects” for

Sioux City and we did not want to consider the possibility of interference for Sioux City’s potential

outcome, then we could write the following hypothesis: H0 : ySioux City,1 = ySioux City,0. Sioux City’s

outcomes if treated would be the same as outcomes if not treated regardless of the outcomes of other

cities. If we wanted to consider this hypothesis for all cities i we might write H0 : yi,1 = yi,0 for all i.

These hypotheses imply no interference, from which it follows that we only consider two potential

outcomes for each city. And only one potential outcome ((yi,1, yi,0)) is revealed to us by treatment

assignment (Z) such that Yi = Ziyi,1+ (1−Zi)yi,0 is an identity linking potential outcomes to observed

outcomes (Y ). By substituting yi,0 for yi,1 and simplifying we see that (H0,Yi) ⇒ Yi = yi,0. That

is, the hypothesis and the identity linking observed to potential outcomes together tell us how our

observed outcomes would look under the hypothesis. Here, the implication of this pair is that what

we observe is what we would observe in the absence of treatment effects, Yi = yi,0.4

4This is a very abbreviated introduction to Fisher’s sharp null hypothesis. See Rosenbaum (2010,

Chap2) for a textbook discussion. Keele, McConnaughy and White (2008) introduce and explain

these ideas for political scientists in the context of this field experiment.
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2.2 How can we write a hypothesis about ‘no effects and interference’?

For clarity in our discussion let us restrict attention to the first two pairs of cities. If cities may

interfere both within and across assignment blocks, then each of the four cities has four potential

outcomes: {yi,1010, yi,1001, yi,0110, yi,0101}. That is, we imagine that a given city, i, would respond with

yi,1010 when city 1 and city 3 are assigned treatment, but city 2 and 4 are assigned control. A strong

hypothesis of “no effects” would state that turnout is insensitive to treatment assignment across all

four cities— the alternative being that any difference in treatment assigned in the system would cause

differences in potential outcomes — so we might write, H0 : yi,1010 = yi,1001 = yi,0110 = yi,0101 for all

cities. Another strong hypothesis of no effects states H0 : yi.1010 = yi,1001 = yi,0110 = yi,0101 = yi,0000

where yi,0000 is the response when the intervention was not applied to any units. Rosenbaum (2007)

calls yi,0000 the potential response to the “uniformity trial”, referring to a methodology used to

calibrate variance calculations in agricultural experiments by assigning treatment but not applying

it. We can write these hypotheses more generally for any vector of treatment assignments, z. We

write yi,z for city i to represent the potential turnout for one possible assignment configuration across

all of the cities. Using this notation, our hypothesis of no effects is H0 : yi,z = yi,z′ for all z, z′ ∈ Ω,

where i = 1, . . . , I . The potential outcomes in response to a given treatment assignment vector are

those that would have been observed if treatment had been entirely withheld from all cities. We

write the potential response to the uniformity trial in our set of four cities as yi,b,z=0 or yi,b,0000.5

2.3 Testing the hypothesis of no effects under interference

Having written a hypothesis in which we do not restrict interference between units, we now show

how to test either hypothesis of no effects. Let us further restrict attention to only two cities. For

city 1, our observed outcome relates to possible potential outcomes via the following equation:

Y1 = Z1
(
Z2y1,11 + (1 − Z2)y1,10

)
+ (1 − Z1)

(
Z2y1,01 + (1 − Z2)y1,00

)
(1)

, where Z2 is 0 or 1 depending on the treatment assigned to unit 2, and Z1 records treatment assigned
5When we analyze the pair-assigned city data, we make use of the paired-assignment mechanism.

Yet, we surpress the b subscripts from now on since most of the discussion is not particular to paired

or blocked experiments.
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to unit 1. The hypothesis of no effects for city 1, H0 : y1,11 = y1,10 = y1,01 = y1,00, implies that

Y1 =Z1(Z2y1,00 + (1 − Z2)y1,00) + (1 − Z1)(Z2y1,00 + (1 − Z2)y1,00) (2)

=Z1y1,00 + (1 − Z1)y1,00 (3)

=y1,00. (4)

And under the hypothesis of no primary effects, H0 : y1,10 = y1,01 (we exclude the “all treated” and

“all control”, or “uniformity trial”, possibilities) so we might just write y1,10 = y1,01 = y1,∗ and so,

Y1 =Z1(1 − Z2)y1,∗ + (1 − Z1)Z2y1,∗. (5)

Now, Z1 = 1 − Z2 and Z1 ∈ {0, 1} by design so we can simplify such that

Y1 =Z1y1,∗ + (1 − Z1)y1,∗ = y1,∗ (6)

Both of these hypotheses imply that what we observe, Y1, is what we would observe in the putative

world of the hypothesis. There is nothing special about this derivation that prevents it from applying

to any number of units or more complex hypotheses (as we shall see).

Once the hypothesis has been formalized and the link between the causal quantities of interest

and the observed outcomes has been deduced, the next step is to look at our data from the perspective

of the hypothesis. For example, if the treatment assignment had no effect, then the mean of the

outcomes in the treated group should be the same as the mean of the outcomes in the control groups

such that we would expect no difference between those means. This kind of reasoning suggests using

a test statistic, t(Z,Y ) to summarize the relationship observed between treated and control units. Here,

for example, we might use the mean difference, t(Zi,Yi) =
∑n

i=1 Zi
Yi
m −

∑n
i=1(1−Zi) Yi

n−m , where m and

n are the fixed number of treated units and total sample size respectively. We use t() to emphasize

that it is not the particular function which matters, but rather that we have a test statistic that is a

function of treatment assignments and observed outcomes. Calculating t(z, yi,z = Y | ∀z ∈ Ω) we

can trace out the distribution of t() under the null of no effects and/or the null of no primary effects

(both hypotheses lead to the same null distribution of the test statistic). That is, for each possible way

to assign treatment given our design, we calculate the value of the test statistic that would be implied

by the hypothesis. The distribution of these calculations indicates the natural variability in the test

statistic under the null hypothesis: any differences between different z’s drawn from Ω can only tell
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us about chance variation, not about systematic relationships between treatment and outcomes (at

least, this is the fiction we entertain when we do hypothesis tests in general). We follow the norm in

defining p-values in relation to these reference distributions (See, e.g. Cox 2006; Rosenbaum 2002).

If our observed test statistic appears extreme compared to the distribution generated by re-running

the experiment under the hypothesis, then we might say that the hypothesis is very surprising or

implausible.6

Summary We stated a hypothesis in which all of the potential outcomes implied by unrestricted

interference are equal (to each other and to a “uniformity trial”). We deduced what this hypothesis

implied for what we observe. We tested this hypothesis by computing a test statistic over all possible

randomizations — all possible realizations of the experiment consistent with the design. For each

randomization, we adjusted the data in accordance with our hypothesis: in this case of the models of

no effects, the hypothesis implies no adjustment (i.e. that Yi = yi,0). In the next section we will need

to make actual adjustments to observed outcomes in order to test hypothesis about particular effects.

If the treatment really had no effects, then differences from randomization to randomization in the

test statistic reveal only the natural uncertainty in our study, allowing us to create a distribution

representing this uncertainty to which we can refer when asking about the support our data bring to the

hypothesis. Comparing the observed responses to the reference distribution quantifies how surprising

our data would be in the world of the hypothesis: we could further decide to reject a hypothesis

if the data looked extremely surprising (if we had prespecified a “surprisingness” threshold, often
6Although most common functions relating treatment and outcomes may be useful test statistics,

only “effect increasing” functions of treatment and outcomes have been shown to produce unbiased

tests of no effects against one-sided alternatives (Rosenbaum 2002, Propositions 4 and 5). This

requirement that a test statistic be effect increasing means that we would prefer our test statistics to

take on higher values as the treatment effect increases. Common test statistics with this property

include Wilcoxon’s signed rank statistic (which is basically the sum of the ranks of the treated units),

differences of means, or other such functions with the general form involving sums of the outcomes

of treated units. That is, a good test statistic is one which maps onto the size of the causal effect that

we are considering in our models of effects (defined a bit later in the paper).
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called α). Rejecting this hypothesis could suggest that some other pattern of responses to treatment

are detectable in this dataset. Not rejecting the hypothesis does not mean accepting it.

Applying this test to the newspapers data, using paired mean differences as t() with Ω defined by

a pair-randomized assignment, we find a one-sided p = 0.38 when we consider the null hypothesis

of no effects (no effects and no primary effects). From the perspective of the null hypothesis, we

would not be that surprised to see a mean difference as large as, or larger than, our observed value.

Notice that the sharp null of no effects required no specific statements about patterns of interference

for a valid test.7

2.4 From “no effects” to “effects”

Asking questions about “no effects” is only the beginning. The motivation for a study tends to

involve some expectations about sign and magnitude if not rough value range for a treatment effect.

Past experience, literature, and theory of two party elections, all might lead us to expect values

of effects for cities exposed to turnout-encouraging advertisements that are definitely less than 10

percentage points of turnout, but also possibly more than 0 percentage points of turnout.

First, consider the simple situation with no interference. If we could hypothesize about no

effects by writing H0 : yi,Zi=1 = yi,Zi=0 then we could formalize a question about a 7 percentage

point difference in turnout for city i with H0 : yi,Zi=1 = yi,Zi=0 + 7. A hypothesis about effects

is a hunch about how potential responses in the absence of treatment would turn into potential

responses to control. In this example, for one city, we entertain the idea that advertisements could

add 7 points of turnout to that city as compared to the situation in which that city did not receive

advertisements. More generally, imagine a function of potential outcomes to control and possibly

other parameters and variables, h(), which transforms potential outcomes to control into potential

outcomes to treatment. For example, if past literature, experience, and theory suggest that we ought
7We also did not rely on assumptions about large-samples, linearity, heteroskedasticy, or Nor-

mality. All of the code to replicate every analysis in this paper will be available at [insert web link].

This fact, that the test of the sharp null of no effects requires no specific statement about interference

has been known and is made use of by Aronow (2010) and Rosenbaum (2007). Our description

above is the most detailed exposition that we have seen to date.
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to investigate the idea that treatment with advertisements provides the same turnout boost in all

treated cities in our pool, we might write h(yi,Zi=0) = yi,Zi=0 + τ = yi,Zi=1. Given our identity linking

observed turnout to potential turnout under no interference, Yi = Ziyi1 + (1 − Zi)yi0, one can make a

test for a specific value, of τ, H0 : τ = τ0 under this model using the same process as we did for the

null of no effects. The only difference here is that, now Yi 6= yi,0 but rather, when we substitute for

yi,1 in the identity and solve for yi,0 we get yi,0 = Yi − Ziτ0, or equivalently:

Yi = yi,0 + Ziτ0. (7)

Thus, we can now compare t(Z,Y − Zτ0) to its distribution across the many ways that treatment

could have been assigned as generated by t(z,Y − zτ0 | ∀z ∈ Ω).8

In this simplest case, we consider 0 ≤ τ0 ≤ 10. If we define “surprising” by α = 1/8 = .125

and we discover that our observed values are not so surprising from the perspective of hypotheses

as long as τ0 ≤ 5. However, this model makes it strange to see our observed mean differences in

turnout for τ0 > 5 (for example p = 0.1875 for τ0 = 5 but p = 0.125 for τ0 = 5.1). Figure 2 plots

the p-values for the range of hypotheses we just tested.9

It is one thing to reject the sharp null, but it is much more substantively interesting to know

that hypotheses about τ greater than 5 points of turnout in the model yi,1 = yi,0 + τ would make our

data look very surprising. In order to move beyond the null of no effects, we did have to specify

something about the structure of the effects: we considered that it was scientifically useful to say

that h(yi,0) = yi,1 = yi,0 + τ — perhaps this hypothesis generator follows from theory, literature,

or experience even if it is not realistic as a mechanism of treatment effects. Notice that we do not

assume that the hypotheses are true, but we can assess the extent to which our data look unlikely
8See Rosenbaum (2010, Chap 2), Keele, McConnaughy and White (2012), and Bowers and

Panagopoulos (2011) for more in-depth exposition of the basics of inverting Fisher’s hypothesis test

to produce a confidence interval.
9While a 95% confidence interval is conventional, not all designs and data allow for such an

α-level. For the newspapers data, there are 24 = 16 possible assignments of treatment due to the

blocking scheme. Therefore, even the most extreme one-sided p-value can be no smaller than
1
16 = .0625. The widest meaningful confidence interval here is thus 1 − (2 ∗ (1/16)) ≈ 88%
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Figure 2: One-sided p-values for hypotheses about τ0 in the model yi,1 = yi,0 + τ. The vertical dotted line at
τ0 = 5.05 shows the break between τ0 = 5 and τ0 = 5.1.

from the perspective of the hypotheses. The hypotheses are a lens through which we can see our

data, or a question we can ask, and the p-values which define plausible ranges of hypotheses are like

the answers we give to the optometrist when she places different lenses over our eyes asking “which

is better?”. It may be scientifically useful to view our data from perspectives that are not realistic:

knowing how we react to strange lenses tells the optometrist information useful to assessing our

eyes. Fisher’s testing framework enables us to use our data and design to reflect back on even strange

perspectives in a formal manner.

As we are building on the basic mechanism of the previous section, we made statements about

the presence or lack of interference between units. As a consequence of the necessary structure, the

hypotheses that we used here implied no interference among units. Yet, the fact that these models and

hypotheses implied no interference does not mean that we cannot ask questions about interference (or

that we cannot build lenses which allow us to see the data from perspectives involving interference

between units). We make this development in the next section.

2.5 Hypotheses about effects and interference

If we can write yi,1 = h(yi,0) = yi,0 + τ then we can write other functions of potential outcomes

in the control condition which likewise generate a list or vector of yi,1 implied by our hypotheses.

Although we might wonder about interference of all possible kinds, the map in Figure 1 suggests two

sets of cities as particularly plausible candidates for interference: the pair of Yakima and Richland
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in Washington State, and Saginaw and Midland in Michigan.10 This section demonstrates both the

flexibility of Fisher’s approach to statistical inference, and highlights a way in which social science

theory can be crucial for statistical inference — by precise specification of unit-level hypotheses.

Hypotheses about spill-over demand specificity: for the purposes of this example, let us presume

that treatment might “spill-over” from a treated unit onto nearby control units but not every control

unit is susceptible to spill-over. A reasonable theory would be that news in the larger Yakima, WA is

likely to reach the smaller Richland, but not vice-versa.11 This model specifically excludes treated

cities interfering with other treated cities or control cities exterting any influence on other units,

though such models would be possible and perhaps substantively useful in other contexts.

We formalize this simple case for two cities and then show how the same logic applies to the

entire design. Much of the formalities were done already in § 2.3 so we do not repeat them here.

First and second, define the potential outcomes for the two cities (Yakima, j, and Richland, i,)

and link those potential outcomes to observed outcomes as shown in equation 1: Yi = Zi

(
Z jyi,11 +

(1 − Zi)yi,10

)
+ (1 − Zi)

(
Z jyi,01 + (1 − Z j)yi,00

)
. Third, express our questions about relations among

potential outcomes as a function that transforms observed data, Yi, to the uniformity trial, yi,00. In

the no interference case, our hypothesis generators h() were functions that specified how we thought

control responses would turn into treated responses. The treatment effects were an additive function

of potential treated and potential control responses, with control responses being the baseline against

which comparisons would be made. With interference in this simple case, we have two different

potential responses to control: yi,00 — potential response when no city receives any treatment —

and yi,01 — the potential response when city i does not receive treatment but city j does receive
10This experiment involving first blocking cities into pairs and then randomizing treatment within

pair. The treated cities were (in order of pair), Sioux City, Midland, Lowell, and Richland while the

control cities were (also in order of pair) Saginaw, Battle Creek, Oxford and Yakima.
11Notice that we can entertain this hypothesis even thoughYakimawas the control and Richland the

treated city in the actual study. The hypothesis might not be plausible given the actual administration

of the study, but it is reasonable a priori and it might be the kind of hypothesis specified before the

study is fielded.
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treatment (we might call this the “only spill-over” potential response). Although other conceptions

may be possible, in this paper we pursue the idea that the baseline of comparison is the uniformity

trial: that is, we want our randomization distribution to represent how cities might have responded

when no intervention was applied in the system at all. A minimal conception of “no effects” in a

situation with spillover is the situation in which the intervention was not fielded at all.

In this example, we want to investigate the idea that treatment effects may spill-over from a

treated unit to a control unit but not vice-versa and that treated units would not interfere with each

other (implying that yi,10 = yi,11). This leads us to simplify equation 1:

Yi = Ziyi,10 + (1 − Zi)
(
Z jyi,01 + (1 − Z j)yi,00

)
. (8)

Now, we must specify how we think yi,00 becomes yi,10 and yi,01. In this case, we write a simple

constant and additive treatment effect for cases where Zi = 1, yi,00+τ, but adding a weighted additive

spill-over effect (i.e. a proportion of the treatment effect) when Zi = 0, yi,00 + wτ, such that our

hypothesis generator is

h(yi,00,Zi) = Zi(yi,00 + τ) + (1 − Zi)(yi,00 + wτ). (9)

Equation 9 gives us yi,10 = yi,00 + τ when Zi = 1 and yi,01 = yi,00 + wτ when Zi = 0. Here we

introduce a weight w ∈ [0, 1], parameterizing how much of the effect, τ, spills over.

Equations 8 and 9 imply that we can write observed outcomes in terms of hypothesized effects:

Yi = Zi
(
(1 − Z j)(τ + yi,00) + Z j(τ + yi,00)

)
+ (1 − Zi)

(
(1 − Z j)yi,00 + Z j(wτ + yi,00)

)
(10)

which simplifies to

Yi = yi,00 + τZi + wτZ j − wτZiZ j . (11)

Equation 11 allows us to recover yi,00 such that

yi,00 = Yi − τZi − wτZ j + wτZiZ j = Yi − τZi − wτZ j . (12)

When τ = 0, we have yi,00 = Yi as implied by Fisher’s sharp null hypothesis. When w = 0, we have

the adjustment implied by the simple constant, additive effects model, Yi − Ziτ. The term, wτZiZ j is

always zero in our design in which Zi + Z j = 1: at least one of Zi and Z j are always 0.
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Thus far, we have developed our hypothesis for Richland — a city we presume could receive

some spill-over from Yakima. Our hypothesis for Yakima involves the hunch that citizens in Yakima

are probably not reading Richland newspapers, but the treatment might act on Yakima as specified by

the constant effects model as developed in the no interference cases: h(y j,00) = h(y j,01) = y j00 + τ =

yi,11 = yi,10. For Yakima, the observed outcome identity simplifies even further that it did for

Richland such that

Y j = Z jy j,10 + (1 − Z j)y j,00. (13)

We can adjust Y j to reflect hypotheses about τ just as we did under the no interference model to

recover the potential outcome under the uniformity trial, y j,00 = Y j − Z jτ.

With y j,00 = Y j − Z jτ and yi,00 = Yi − Ziτ − Z jwτ, we can assess hypotheses about treatment

effects, τ, given a pre-specified spill-over effect, w, or vice-versa, or even assess hypotheses about

the two parameters jointly. If we had more than two cities we could set w to be a function of the

distance between the cities (or another measure of connectedness). Considering two-way, symmetric

interference between two cities k and l leads each city to have the same form of adjustment (shown

here for city k only): yk00 = Yk − τZk − wτZl. Taken together we have a small system of models

which formalize some informal theory about how treatment might matter for treated and control

cities and about relationships among the cities:

h(yi,00) =


Zi(yi,00 + τ) + (1 − Zi)(yi,00) for i ∈ { Yakima, Oxford, Lowell, Battle Creek, Sioux City }

Zi(yi,00 + τ) + (1 − Zi)(yi,00 + wτ) for i ∈ { Richland, Midland, Saginaw }
.

(14)

That is, we want to consider (a) one-way interference from Yakima to Richland, (b) two-way

interference between the two neighboring Michigan cities of Midland and Saginaw, and (c) no

interference for the other cities in the dataset. Equation 14 implies the following adjustments to

observed outcomes, Yi to enable the generation of the reference distributions arising from the

hypotheses about τ and w that govern equation 14:
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yi,00 =



Yi − τZi when i ∈ { Yakima, Oxford, Lowell, Battle Creek, Sioux City }

Yi − τZi − wτZ j when i=Richland, j=Yakima

Yi − τZi − wτZ j when i=Midland, j=Saginaw

Yi − τZi − wτZ j when i=Saginaw, j=Midland

(15)

Equation 15 can be read as saying that the potential outcome to control for city i when no cities

receive treatment, yi,00, can be recovered by modifying what we observe, Yi, with a hypothesis about

what we do not observe. Specifically, we consider the idea that for four cities, the effect of advertising

is simply τ percentage points of turnout. But for other cities we consider the idea that, if specific

other cities received the treatment, some proportion of that treatment, w, would be experienced by

the city in the control condition.

Models with an interference parameter and a causal effect parameter seem to arise naturally when

we consider interference between units. The hypothesis generator introduced in equation 14 involved

a parameter w in order to enable us to engage briefly with such the questions. Statistical inference

in the presence of parameters like w depends on one’s perspective on w. If w is a fixed feature of

the design, inference may proceed as done in the previous paragraph setting such parameters at

fixed values, or one may consider w as a kind of tuning parameter, and values for it could be chosen

using a power analysis or cross-validation. If w is not fixed but is considered a nuisance parameter,

then one may produce confidence intervals either by (1) assessing a given hypothesis about τ over

the range of w, keeping the hypothesis about τ with the largest p-value (Barnard 1947; Silvapulle

1996) or (2) producing a confidence interval for w and adjusting the largest p-value from a set of

tests about a given τ0 over the range of w in the confidence interval (Berger and Boos 1994; Nolen

and Hudgens 2010). Nolen and Hudgens (2010) show that either solution will maintain the correct

coverage of the resulting confidence intervals about treatment effects, although using the largest

p-value is apt to make those confidence intervals overly conservative.

Yet, parameters like w need not be a nuisance. In this case, we wrote our model so that w could

represent the extent of spillover. The approaches to w as a substantive parameter to be estimated

involve, in essence, exploring a 2-dimensional slice through the set of possible hypotheses. In fact,
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we could easily produce a confidence region for w0, τ0 pairs which would encode the evidence our

data bring against such joint hypotheses.
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Figure 3: Tests of joint hypotheses about w and τ generated by the model in equation 14. The plot shows
areas delimited by the one-sided p-values for the tests of each joint hypothesis. Lower p-values are plotted in
lighter color. Higher p-values are plotted in darker colors.

Figure 3 is one representation of such a confidence region using our 8 city data. Equation 14

provides observable implications for our hypotheses, and thus we can test these hypotheses about

treatment effects τ and spillover amount w. As before, we use the mean difference test statistic and

sweep it over all z ∈ Ω to construct the null hypothesis distributions. For each hypothesized pair of

(τ0,w0), we can ask, “are the observed responses unlikely from the perspective of the model?” The

shading of the plot shows the one-sided p-values from assessing these pairs. The lower bound of

the one-sided region is, of course, unbounded, since in this case since we do not consider τ0 < 0

or w0 < 0. In the absence of spillover (when w0 = 0), hypotheses in the form of equation 14 are

rejected for τ0 > 5 at α = .125 — thereby recovering the confidence interval for the non-interference

hypotheses.

The figure shows that, as we begin to entertain hypotheses about some positive amount of spill-

over, the confidence interval expands. This is sensible: if, when treatment is assigned to one unit,

most of that treatment is also experienced by another unit, then we have less information available

about the treatment effect than we would have if the two units had been independent. Consider the

extreme case in which treatment assigned to one unit is fully experienced by the relevant control
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unit — then we would not have enough information to calculate a treatment effect at all. In this

small dataset, we see little to distinguish among different hypotheses about w except when treatment

effects are hypothesized to be quite high. For example, at H0 : τ0 = 6, we could reject hypotheses

about w0 < .2 at α = .125 — i.e. when the treatment effect is large, we cannot reject hypotheses in

which there is moderate to severe spillover but we can reject hypotheses about low to no spillover.

This simple illustration is merely an example of how far one may push Fisher’s framework. It is

not an argument in favor of a particular set of hypotheses in this application, though we hope readers

will find our choice of a geographically informed model plausible. The main point is that one may

reason directly about interference and such reasoning, if formalized, can produce hypotheses about

both causal effects and structural features of the effects. The data can provide evidence against

such hypotheses. Multi-dimensional hypotheses may be tested to produce substantively interesting

and useful confidence regions. The region tells the analyst both about what kinds of values might

be implausible under a theoretically informed model and also about the amount of information

available to make such plausibility assessments. In the next section we demonstrate these same

properties for a much larger simulated experiment with a more intricate network connecting units,

but as a simulated network, it is an experiment in which we have less theoretically useful qualitative

information about each unit to aid our reasoning about interference.

3 Assessing Machines and Models
An advantage of our approach is that it allows models of the substance of the causal process to

have direct implications for data. Of course, the flexibility of this approach is both a blessing and

curse: Models are choices, and choices must be justified. Although we cannot say how to choose the

true model generating the observed outcomes, we might be able to assess a few interesting models,

and, by comparing them, allow them to shed light on the relationships between our theories and our

observations.

In this section we use a simulation study to illustrate how one might choose and assess a model

that involves treatment effects that depend on network attributes. First, we suggest comparing the

size of a test (the probability that it rejects a correct null hypothesis) with its level (the pre-specified

probability of rejecting a correct null hypothesis). Rosenbaum (2010, Glossary) calls the level
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of a test the “promise” of a given error rate. So, this assessment can be thought of as asking

whether a given hypothesis testing procedure fulfills (size) its promises (level). Second, we show

that confidence regions and intervals contain the “true” parameter values (set by us in advance of the

simulation). Third, we offer some graphical methods for inspecting the implications of the models

used — both in terms of how the models can make treated subjects and control subjects look alike

(when the model is correct) and in terms of how different models may intersect in certain sets of

hypotheses.

3.1 The Simulation Setup

Our simply randomized experiment involves a known and fixed social network in which half the

units are assigned to treatment. Figure 4 shows this network as a collection of nodes (units) and

lines (connections) with colored shapes indicating treatment assignment status. Our simulations use

a moderately large sample, n = 100, in order to demonstrate the feasibility of this approach when

n > 8.
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Figure 4: An undirected, random, social network assigned to treatment (circle) or control (square). Probability
of a connection between any two units is 0.04 for all units.

We can summarize networks with matrices. In this case, for example, four units in this network

have the following n × n adjacency matrix: S =
6 7 8 9 10

6 0 0 0 0 0
7 0 0 0 0 1
8 0 0 0 0 0
9 0 0 0 0 0
10 0 1 0 0 0

. This matrix shows that unit 7 is

connected to unit 10 (and because we have undirected connections, unit 10 is also connected to

unit 7). The other units are not connected to each other or units 7 and 10. Summarizing network
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connections as a matrix allows us to flexibly summarize aspects of the network for focused testing.12

In this network, the number of connections ranges from 0 to 12; the number of connections to

assigned treatment units range from 0 to 7, with 50% of units connected to between 1 and 3 units.

The outcomes in the absence of any intervention in the network are generated simply as draws from

a Uniform distribution: y0 ∼ U(30, 70).13 Following Hong and Raudenbush (2006), we represent

network dependence by a scalar function (i.e. we here consider the situation where the effect of

the network can be represented by some function summarizing the network with a single number

for each unit). Specifically, we consider the situation where the network effect is represented by

a function of the number of directly connected treated units. Note that this simplification, while

convenient, is not a crucial part of our proof of concept.

We generate outcomes to follow two different models, each of which displays network related

dependence in relationships among potential outcomes. As in the previous sections, these models

describe the relationship between uniformity outcomes and observed outcomes. Both of our generat-

ing models exhibit relatively complex dependence of treatment effects on network attributes. What

happens if we assess a model that ignores the network when the actual outcomes depend strongly on

the network? As an illustrative response to this question, we contrast these models with the constant

additive effects model (which implies no network effects) as defined in Equation 7.

3.1.1 A model with treatment effect dependent on network relationships.

Our first generating model specifies that the number of treated connections have a non-linear and

non-monotonic relationship with a constant, additive treatment effect, τ. We set τ = 10 — a large
12The use of linear algebra to simplify and represent our ideas about graphs (such as networks)

and potential outcomes is expanded upon in the Web Appendix online. That document is primarily

useful for those wishing a more general way to write the relationships between potential outcomes

and potentially interferring network/graph structures.
13One might think of this kind of outcome as a proportion if the units were aggregates (like towns).

The procedures for statistical inference used here require no assumptions about the stochastic

processes producing outcomes. Thus, we choose a uniform distribution of this sort to link to

common political science data types, not because the methods here depend on this distribution.
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effect, 1 standard deviation, on the scale of the outcome. The function linking number of treated

connections to outcomes in the group assigned to treatment is a cubic polynomial with parameters a,

b, and c fixed at -.5, 1, and 7 respectively:

f (s, a, b, c) = (a/c)s3 − as2 + bs (16)

The inner product of the vector of treatment assignments, s = ZTS, is a vector containing the number

of treated connections for each unit in the study.

Equation 17 shows how observed outcomes are generated additively from the uniformity trial

using different versions of the linking function in Equation 16: units assigned to control receive only

τ = 10× the number of treated directly connected other units while the those assigned to treatment

get some non-linearly changing proportion of τ depending on the number of directly connected

treated other units.

Y = y0 + Zτ f (ZTS,−.5, 1, 7) + (1 − Z)τZTS (17)
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Figure 5: Implications of models graphed by number of treated connections (left) and Uniformity trial (right).
The left panel shows treatment effect (a difference in potential outcomes) implied by either y1i = y0i + τ (the
flat line) or the model in equation 17 (the curved line). The right panel shows the same functions as applied to
the n = 100 draws from y0 ∼ U(30, 70) representing the uniformity trial. The high blue lines (one curved,
one straight) arise from equation 17. The less steeply sloping red lines at the bottom of the panel show the
implications of the model of constant treatment effects.

Figure 5 shows how equations 16 and 17 combine with treatment assignment and network

characteristics to (1) transform the potential outcomes under the uniformity trial potential outcomes
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to treatment (the left panel) and (2) transform potential outcomes under the uniformity trial to

observed outcomes (the right panel). The idea of the model in equation 17 is that the number of

connected treated units amplifies treatment in the treatment group up to a point after which the

saturation of connected treated units begins to have a negative effect. In contrast, spillover onto the

controls is additive and monotonic in the numbers of connected treated units.

3.1.2 A model with a treatment effect and a spillover parameter.

Although the one-parameter model allows for treatment effects to vary nonlinearly with network

attributes, it does not easily allow us to answer questions about the existence of such effects per se.

To illustrate how one might specify a model in which a no-interference model is nested within a

model of interference we specify a two parameter model. The functions linking number of treated

connections to outcomes, equations 18 and 19, are simple nonlinear functions: g(s) approaches 1

as |s| → ∞ and so can be understood as a proportion of the treatment effect derived from treated

neighbors.; f (s) approaches 0 under the same conditions. Both are bounded between 0 and 1.

g(s) = 1 −
1

1 + s
(18)

f (s) =
1

1 + s
(19)

Like equation 17 for the first model, equation 20 shows how observed outcomes are generated

additively from the uniformity trial. For this model, the story involves both a network spillover

effect (τ2) and a direct treatment effect (τ1). Units in the control group do not get the additive direct

effect of τ1 but get some proportion of τ1 depending on τ2 and a function of the number of directly

connected treated units.

Y = y0 + (Z(τ1 + τ1τ2g(ZTS)) + (1 − Z) ∗ (τ1τ2g(ZTS))) (20)

When τ2 = 0, this model of effects reduces to the constant additive effects model. Thus, one can

compare both the results of the constant additive effects model (our naive/simple model of choice in

this paper) to the more complex model which generates the data.

Figure 6 shows the implications of this model as compared to the constant additive effects model.

Potential responses to treatment would always be larger than potential responses to control, but
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Figure 6: Implications of models graphed by number of treated connections (left) and Uniformity trial (right).
The left panel shows treatment effect (a difference in potential outcomes) implied by either y1i = y0i + τ (the
flat line) or the model in equation 20 (the curved line). The right panel shows the same functions as applied to
the n = 100 draws from y0 ∼ U(30, 70) representing the uniformity trial. The curved blue lines arise from
equation 20. The straight red lines show the implications of the model of constant treatment effects.

this difference would decrease as the network local to a unit saturates with other treated units. The

marginal effect of the network diminishes for both treated and control units, although the marginal

effects change rapidly when the unit is connected with few other treated units.

3.2 Right Model, Right Parameter: The Size of Tests

When we generate data with a known model with known parameters, “true” null hypotheses

should be rejected no more than 100α% of the time at level α. That is, when we have the right model

and the right parameter, we still will reject right hypotheses, but we want to do so in a controlled

manner and rarely. Although knowledge that the size of the test is the same or less than the level is

nice, it is really only a minimal condition. We do not tend to know either the model or the parameter.

Thus, we also here present the results of using models that ignore network characteristics when the

true outcomes are generated by the model presented above (and the results of using the network

models when the true outcomes come from the constant effects model).

Our simulation study uses 1000 repetitions of the following algorithm, based on the fixed

uniformity trial outcomes generated by y0 ∼ U(30, 70).
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1. Draw a vector of treatment assignments from the set of possible assignments consistent with

the design (here, simply, having 50 1s and 50 0s.). Consider this vector the “temporary real”

assignment.

2. Generate a set of observed outcomes from the fixed uniformity trial following the “temporary

real” assignment and the “right” model (i.e., equation 17 or 20).

3. Assess hypotheses about the parameters of the true model and about the parameters of the

wrong model (where the wrong model is the constant additive effects model in both cases).

For example, for the two parameter model, we assess all the integer hypotheses for which

10 ≤ τ1 ≤ 50 and 10 ≤ τ2 ≤ 50 (in all, about 50 ∗ 50 = 2500 hypotheses total).

Size is calculated from the proportion of “true” hypotheses rejected in step 3 at the range of α levels.

Figure 7 shows in the right hand column the proportion of correct hypotheses rejected for every

0 ≤ α ≤ 1 level. We can see that when our model has strong support in the data the test fulfills its

promises whether we are testing a true τ or a true joint {τ1, τ2}. When our model has little support in

the data, the test rejects the true hypotheses nearly always as shown in the left and middle columns

of the figure.

3.3 Interpreting Models of Interference

When we test a range of hypotheses about parameters made meaningful by a given model of

effects, including interference, how should we interpret the results?

Figure 8 uses two-sided p-values to summarize the evidence against hypotheses generated from

these models. The curve on the left panel intersects with the horizontal lines at p = .05 and p = .1

— the boundaries of 95% and 90% confidence intervals. We can see that the correct value is at

the center of the interval: the p-values quantify the idea that our data would not be surprising if τ

were 10 and our model were that defined by equation 17. The right panel plots two-sided p-values

for pairs of hypotheses about τ1 and τ2. The correct value of (τ1 = 50, τ2 = .8) is in the middle

of the region. We show contour lines at p = .05 and p = .1 to illuminate the boundaries of a

two-dimensional confidence region. In this model, it is τ1 which really drives differences between

those assigned treatment and control. The parameter governing the network effects contributes
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Figure 7: For simulated data (n = 100, over 1000 simulations) with network moderated treatment effects, the
proportion of true null hypotheses rejected at level α for all α. The panels labeled “Network Effects Model
. . .Network Effects Data” show the correct models assessing the true parameters. The other panels (in which
the models are not “right”) reject the “truth” always, whereas the “right” models reject just about 100α % of
the time (within the simulation error range — shown by the dashed gray lines.)

relatively little to this difference (compared to τ1). So, we see that the region is in the shape of a line:

many hypotheses about interference are compatible with these data as long as they are paired with a

relatively small range of τ1. That is, one interprets confidence regions just as one would interpret

confidence intervals — as containers for hypotheses that are difficult to reject. As we well know,

such containers (intervals or regions) do not tell us the location of the truth, but rather tell us what

we can learn from a given design. We can learn that our design does not support precise answers to

questions of particular forms (as we learn here for τ2) or that our design supports precise answers

(as we learn here for τ1 and τ).

3.4 Comparing Wrong Models

The methodology presented here does fulfill the minimal criteria that we tend to expect from

our statistical procedures: Figure 7 shows that the size is less than or equal to the level of the test

(and by implication the truth is inside a confidence interval). And we have also discussed how one
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Figure 8: The left panel shows two-sided p-values (on the y-axis) plotted for hypotheses about τ as defined in
equation 17 with τ = 10. The right panel shows two-sided p-values (on the z-axis as colored regions and
contour lines) for hypotheses about τ1 and τ2 as defined in equation 20 with τ1 = 50, τ2 = .8.

might interpret the results of using such models with results shown in Figure 8 (in the fortuitious

circumstance that the model agrees very strongly with the data).

The comparison of “right” to “wrong” wrong models is somewhat unfair, of course. For example,

the meaning of τ differs between the two one-parameter models. In the constant effects model it

refers to an overall constant and additive shift in the potential outcomes. In the nonlinear network

effects model, τ is still an additive difference between the treated and controls, but it is moderated by

the network attributes of the person. The model determines the meaning of the parameter. Perhaps

we should not have even named the parameter with the same symbol in both models. Yet, we

did so in part because we wanted to lay the groundwork for an important point about models of

effects: two models may be isomorphic at least for certain hypotheses. Recall that the ingredients

of testing specific, sharp null hypotheses are: (1) hypothesis generating functions or models of

effects, h() (e.g. h(yi,0) = yi,1 = yi,0 + τ) which pose a question in terms of counter-factuals and

give causal meaning to one or more parameters like τ and (2) observed outcome identity equations

(e.g. Yi = Ziyi,1 + (1 − Zi)yi,0) which link potential outcomes to observed outcomes via treatment

assignment. Pairs of models and identities allow tests of hypotheses about parameters because

the pairs, if correct, have observable implications: here, for example, if H0 : τ0 = 10 is correct
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and the model is correct, then we can remove the effect of the treatment from Yi and recover yi,0:

yi,0 = Yi −Ziτ with τ set to 10. Probability statements about H0 arise from applying a test statistic to

the adjusted outcomes to compare the observed test statistic t(Zi,Yi − Ziτ) to the distribution which

we would observe if the experiment were repeated. It is conceivable that there are certain hypotheses

from the constant effects model which imply the same adjustment to outcomes as the polynomial

network effects model: that is, even if the constant effects model is “wrong” when applied to the

data generated by a network effects process, certain comparisons of treated to control groups may be

identical for some hypotheses and test statistics. And, the distributions of responses to treatment and

control may be brought into alignment via multiple mechanisms. In this short section we consider

two ways to compare models: first in regards to a concept of the distance between models for a

given unit and second in regards to the differences in distributions across units implied by their

adjustments. In both cases we emphasize graphical methods.

3.4.1 Competing models, complementary answers

All models used in this paper are functions that map the potential responses under the uniformity

trial to potential responses to treatment and control. The known design of the study, the models and

the identity equation linking potential outcomes to observed outcomes allow us to test hypotheses.

We can think of the model of potential outcomes and the observed outcomes identity as combining

to produce a function that converts responses in the uniformity trial into observed responses. For

example, let f be a model with possibly vector valued parameters θ f and let g be a different model

with parameters θg:

Y f = f (y0,Z, θ f ), (21)

Yg = g(y0,Z, θg). (22)

Under the right set of parameters (θg, θg) different models will map the uniformity trial to the same

observed data, i.e. Y f = Yg. The trivial example is the sharp null of no effects. All models share

this hypothesis for at least one vector of parameters. In the case of the additive models used in the

previous simulations, these models reduce to the sharp null when τi = 0,∀i. At this value of τ, the

model implies no adjustment to the observed data. In the multiplicative model, Y = δZy0+ (1−Z)y0,
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the sharp null of no effects is represented by δ = 1.

While all models, suitably parameterized, can represent the sharp null hypothesis of no effects,

it is more likely that two models will only agree in adjusted outcomes for certain values of their

parameters. Consider the trivial case of a uniformity trial where all units have unit outcome: y0 = 1.

For these data, the additive model will imply the same adjustment as the multiplicative model when

(τ = 1, δ = 2): Yτ=1 = 1 + Z = 2Z1 + (1 − Z)1 = Yδ=1.

For more complex designs and models, these relationships between models may not be immedi-

ately apparent, but can be deduced by applying the models to the data and comparing the discrepancy

via a loss function. For example, we might define D to be the Euclidean distance between the

predictions made by two different models such that

D =
√(

f (y0,Z, θ f ) − g(y0,Z, θg)
)T (

f (y0,Z, θ f ) − g(y0,Z, θg)
)
. (23)

Notice that this comparison is made at the unit level, rather than at the level of the distribution. Two

models may imply similar changes in distributions of outcomes, but have very different unit level

implications. For example, a given θg and θ f may imply the same shift in the mean of the outcome

distributions but imply different ranks assigned to the individual units.

Let us unpack this idea of unit-level distance between models. Consider two matrices A and B

containing the adjustments implied by two models, also A and B. Each one is p × n where p is the

number of different hypotheses specified (assume, for now, that we are only comparing two models,

each with a single parameter). If we subtract the first column of A from the first column of B we

have, for unit 1, the differences in adjusted outcomes implied by the different hypotheses for model

A versus model B. The sum of the squares of these differences is a measure of the overall difference

between model A and model B for unit 1 (given the hypotheses). The square root of this sum of

squares is an Euclidean distance, or straight line distance, in the units of the outcome between the

two points in n-dimensional space where n refers to the total number of units. If we had only two

units, and the two models of interest implied {10, 11} and {20, 30} for the two units respectively, then

we would ask about the distance between the point (10,11) and the point (20,30) — which would be√
(10 − 20)2 + (11 − 30)2 = 21.47 in the same units that we measured. If we had more units, then

our sum inside the square root bracket would get longer, but would still return a single number.
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Figure 9: Euclidean distance between the constant additive effects model (m1) and the one parameter
interference model (m2). The data arise from the interference model from equation 17 with τ = 10 and the
network is as shown in figure 4. When effects are small, the two models imply very similar adjustments to the
data.

Figure 9 shows the distance between the constant additive model and the one parameter interfer-

ence model (17) for a range of hypotheses relevant to each model (here the hypotheses happen to be

the same but need not be the same) as applied to data generated by the polynomial network inter-

ference model shown in figure 4. As we would expect, both models produce the same predictions

for all units when τ = 0 (as shown by the darkest colored square at the 0,0 grid location). The dark

shades at the center of the plot (where treatment effects are small) depicts a situation where the two

models more or less agree. As treatment effects increase in size the two models imply ever more

distinctive patterns in the outcomes. As they attempt to recover the uniformity trial, each model has

to adjust the outcomes more severely as the treatment effect becomes larger, and these adjustments

differ from each other more and more.

Figure 10 shows the relationship between the two parameter network effects model and the one

parameter constant effects model nested within it. When τ2 = 0 (the panel labeled “m2.tau2=0”

in the lower left hand part of the plot), the two models agree exactly at all hypotheses (the black
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Figure 10: Euclidean distance between the constant additive effects model (m1) and the two parameter
interference model (m2) used in the simulation. The data arise from the interference model from equation 20
with τ1 = 50, τ2 = .8 and the network is as shown in figure 4. The two parameter model is the same as the
constant effects model when τ2 = 0 (‘m2.tau2=0’) and when τ = τ1 (‘m1.tau’=‘m2.tau1’).

squares on the diagonal show this). In that plot, the models differ only when the hypotheses differ

(for example, the panel labeled ‘m2.tau2=0’ shows that two constant effects models will differ from

each other if one is using an effect of 10 and the other an effect of 20). The models also agree exactly,

regardless of the value of τ2 when both treatment effects are zero (the black squares at the bottom

left corner of each panel).

When models imply the same adjustments to the data, the p-value for both hypotheses will be the

same if we use the same test statistic. Such a result would indicate that the data are equally surprising

from the perspective of both models at these hypotheses. Consequently, models that make similar

predictions at specific hypotheses provide opportunities to interpret results under either theory. Even

though the interference model performs better overall on the interference-model generated data,

sometimes a simpler model may be useful especially if it is compared with one or two other models.

3.4.2 Competing models, contrasting “fit”

Although we do not have a well-defined concept of model “fit” in this framework, we still might

ask whether a given model implies adjustments to the data which do, in fact, bring the control

31 Rev: 6a91596 on 2012/01/25 at 16:15:01 -0600



and treated groups into alignment. One method for assessing models in this way was suggested

by Rosenbaum (2009, Chap 2) in which distributions of outcomes after and before application of

models were displayed using boxplots. We build on that method here. Although we do not know the

“true” model, it may be useful to see how the application of a given model moves the distributions

of the control and treated groups toward each other (indicating successful removal of a difference

between the two groups).
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Figure 11: Adjusting observed data using the least surprising hypotheses for each model in the simulations (the
one parameter simulation is the left panel, the two parameter simulation is the right panel). Solid horizontal
lines with boxes are group medians, dashed horizontal lines are group means. Uniformity trial is on the far
left in each panel. Observed outcomes (‘Obs.’) are plotted next to the uniformity trial (‘Unif.’), followed by a
“wrong” model (‘Const. Eff’) and finally the “right” model (‘Net. Eff’) is shown at the far right column within
each panel.

Figure 11 presents this graphical indication of model performance. This plot shows the distribu-

tions of outcomes in the uniformity trial, the “observed” data generated from the different simulation

models, and the adjustments implied by the least surprising hypotheses for each model. Recall that

each hypothesis implies a different adjustment to the outcomes. Here we take the hypothesis that is

as close as possible to the center of the confidence intervals that we presented earlier, that is, the

hypothesis with the maximum observed p-value. Such a hypothesis is least surprising or hardest to

reject and represents one way to think about a point estimate in this framework.14

14This way of thinking about point estimates is rough and useful for graphs but does not have

theoretical grounding. The Hodges-Lehmann point estimate is the more common and well developed

method for producing point estimates from hypothesis tests (Rosenbaum 1993; Hodges and Lehmann
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The model comparison for the one parameter network effect simulation data occupies the left

plot. We see the uniformity trial data (known here since we are using a simulation) at left. To

the right within that plot we see the treatment-vs-control comparison for the simulated observed

data: the treated group is higher in distribution than the control group. Next, we show the results

of applying the constant effects model using the mean difference test statistic. As expected, this

model and test statistic equalizes the means of the two groups by shifting the treated group down.

The distance between the original mean of the treated group and the mean of the treated group after

shifting it down to the control group is the least surprising hypothesis. We still see that the variances

of the two groups are very disimilar as are their medians. The right most column in this panel shows

the results of applying the correct model to the observed data. Now, the control and treated groups

look like two random samples from the uniformity trial.

The right panel shows the comparison for the two parameter simulation data. Again, the constant

effects model acts by moving the treated group to align means with the control group whereas the

networks effect model involves shifting both the control and treated groups to be equal to each other.

In practice, of course, researchers will not have access to the uniformity trial, but researchers

can still compare observed and model adjusted distributions for any dataset using this technique.

Comparing multiple “wrong” models in this way would illuminate the ways in which the models

leave aspects of the distributions of the experimental groups unexplained/unaligned.

4 Where do models come from?
When one is familiar with reporting average treatment effects, sitting down to specify a model

of specific, unit-level effects may cause an experience not unlike the moment of sitting down to

1964, 1963). We focus on least surprising hypothesis rather than Hodges-Lehmann point estimates

because a different closed-form solution for the HL-estimate arises from each combination of model

of effects and test statistic (the HL estimate for the difference of means test statistic with a constant

effects model, for example, is simply the observed difference in means. But this simplicity is not

guaranteed for other models and test statistics). In our experience, the value of the parameters with

the maximum p-value (or the median of the set of maximum p-values) tends to be the same as the

HL-estimate or very close.
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confront a blank page at the start of a writing project. How should one start? The blank page scares

us because it is a glance at infinity: nearly any combination of words may be written down. Since

writing is a high stakes activity for academics, the knowledge of impending judgment combined

with the realization of the nearly infinite possibilities can paralyze. Yet, even if the blank page is

scary, we either figure out how to cope or leave the writing life for another profession.

We not only face the need to make decisions when wewrite, but also when we plan an experiments

and analysis. The average treatment effect may be a comforting default, but, of course, in the presence

of interference without some clever design or model by which the average is decomposed it is of no

use.

Fisher’s sharp null hypothesis encourages us to confront infinity with specificity in more or less

the same way that we do so in planning, design, and writing. After all, it seems overwhelming to

consider all of the possible ways that any given treatment could have an effect on all of the units

in a study. And allowing ourselves to think about such effects while allowing also for interference

between units may appear to court insanity. Yet, recall that each and every researcher is always

confronting infinity during research design, data collection, and data analysis. Research involves

engagement with details, and if the devil lies not in the details, at least infinity hides there. Thus, the

fact that we must make decisions in the face of infinity is something common: we use past decisions

(i.e. “The Literature”) or current observations or past or current theory to help constrain the general

boundaries of a research project. And we are well used to justifying our current decisions. We are

always and everywhere making certain choices. It is to help us make scientifically interesting choices

that we read thousands of pages in graduate school, for example. Formalizing certain putatively

scientifically interesting choices to enable discussion and criticism in the form of testable hypotheses

ought to enhance scientific communication and research accumulation.

The social organization of science is, in fact, designed to help us carve narrow paths through the

enormous thicket of decisions that always face us. No scholar can claim to have made an “ideal”

set of decisions, just as no writer can claim to have written the “best” paper. The question is never

whether a given paper is best in an absolute sense, but whether the large set of decisions by which

the researcher winnowed down the infinite set of possibilities allows us to understand something
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new and useful about the world.

From this perspective, Fisher’s sharp null is no different. We should not fear it. In fact, the method

we developed in this paper merely gives us more possibilities for scientifically useful, justified,

decision making. The fact that one scholar assesses one set of hypotheses does not preclude others

from assessing another set — and may even require the assessment of a future set of hypotheses from

the questions raised in the original research. Readers will want to know why this set of hypotheses

were assessed and not a few obvious others, yet, again, this is no different from explaining the

decisions behind the design and administration of the experiment itself.

As we write models, we can certainly go too far. For 100 units, we could create a model with 100

different effects. Testing every possible combination of those effects would give us a 2100 hypothesis

vector and a 100 dimensional space of hypotheses tested (for a binary treatment). Canvassing a

collection of such hypotheses is intractable. Moreover, it is not clear that such an effort would be

fruitful. As Rosenbaum notes in his discussion of this very topic, “. . . it is straightforward to make

valid statistical inferences that are so complex, so faithful to the minute detail of reality, that they are

unintelligible and of no practical use whatsoever” (Rosenbaum 2010, 45). So we must simplify with

our models. Referring to our 100 dimensional space as 2I , and a parameter θ, Rosenbaum further

explains:

In this sense, a 1-dimensional model for the 2I dimensional effect, such as the constant
effect model, may be understood as an attempt to glean insight into the 2I dimensional
confidence set for θ while recognizing that any 1-dimensional model, indeed any intelli-
gible model, is to some degree an oversimplification. Understanding of θ is often aided
by contrasting several intelligible models, rather than discarding them. Arguably, the
joint consideration of three 1-dimensional models for the 2I-dimensional parameter θ
provides more humanly accessible insight into θ than would a 2I-dimensional confidence
set. (Rosenbaum 2010, page 45)

Writing several simple models may be superior to a single complex model. Selecting which simple

models and just how simple is an opportunity to engage with theory. Explaining how simple models

glean insight into complex realities is an opportunity for future work.

Where do hypotheses and models come from? This question is well beyond the scope of this

paper although it is important (Clarke and Primo 2012). As a statistical methodology paper, we have
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chosen to focus on a few models of effects and empirical examples in the hope that our proof of

concept stimulates others to apply these ideas to their own work. One aspect of this process which

we elided in the interests of space and time is the question of the role of theory in the specification

of sets of hypotheses. It is obvious that specific statements about counterfactuals which produce

predictions for all units appears to be something which formal theory of all kinds is well situated to

help provide. Thus, although there is much work to be done on the statistical methodology side of

this approach, perhaps the most profound impact of this work will be to offer a new way to allow

theory to speak with data, a new way to ask interesting questions.

5 Conclusion
When treatments given to one unit may change the potential outcomes for another unit, the

consequences of ignoring interference may be serious. Imagine a development project aiming

to assess a policy as applied to different villages in need of aid. If members of control villages

communicate with members of treated villages, then we will have trouble advising policy makers

about whether the policy should be rolled out at a large scale. We have long known, in fact, that the

average treatment effect is not even well identified or meaningful under interference (Cox 1958).

So far attempts to enable statistical inference about treatment effects with interference have taken

for granted the average treatment effect framework and worked to partition the average into parts

attributable to interference and parts attributable to direct experience with the treatment. In this paper,

we propose a different approach based on asking direct questions about specific forms of interference.

Fisher’s test of the sharp null is still meaningful even when each unit may have many potential

outcomes due to interference. Additionally, Fisher’s framework allows detection of interference

(Aronow 2010), and under certain conditions, allows the creation of intervals for hypotheses about

treatment effects without requiring specific statements about the form of interference (Rosenbaum

2007). Our paper contributes to this literature by showing how one may directly specify and assess

hypotheses about theorized forms of interference. We also show that onemay produce confidence sets

that illuminate the information contained in a dataset regarding different combinations of hypotheses

about interference and treatment effects. This form of statistical inference does not require asymptotic
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justifications or assumptions about the stochastic processes generating outcomes.15 This approach is

not difficult to use. In appendix Appendix A we provide a few code snippets to illustrate the simple

relationship between a formal model of effects and a statistical test of relevant hypotheses.

15While not required, such additional assumptions can profitably speed computation. For example,

in our simulation, we employed a test statistic and Normal approximation suggested in (Hansen and

Bowers 2009). When applied to data generated by the method of random assignment used in the

simulation, the statistic rapidly converges to a Normal distribution. While the asymptotic justification

would have been inappropriate for the newspaper example (with n = 8), we considered it compelling

in our simulation (n = 100). More information on computation can be found in Appendix Appendix

A. The materials to completely reproduce the results in this paper as well as supplementary analyses

not presented here may be found in the reproduction compendium found at [insert web link].
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Appendix A Code Examples
Here we provide snippets of R code meant to illustrate and make concrete the workflow involved

in implementing our ideas.
To test a set of hypotheses about the parameters of a given model we require: (1) An n × 1

vector denoting assignment for each unit to treatment and control (Z); (2) An n × 1 vector recording
membership in any strata or blocks (B); (3) An n × 1 observed outcome vector (Y); (4) The inverse
model of effects (i.e. the function which recovers the uniformity trial by removing the hypothesized
effects from the vector of observed outcomes); (5) One or more vectors of particular values for the
parameters that are worth investigating (i.e. if the model involves τ then we need a vector of possible
τ0 that we desire to test); (6) A test statistic that is a function of outcomes, treatment, and blocking.

Here, for example, we assess the constant effects model from § 2.4 as follows:

Generating the Hypothetical Randomization Distributions from the Constant Effects Model

constant.additive.inverse.model← function(ys , z, b, tau){ ys - (z*tau) }
tau0s ← list(tau=seq(0,10,1))
nsims ← 1000
tau0.dist← pRD(data=Y, ##the outcome

treatment=Z, ##the treatments
test.stat=mean.difference , ##the test statistic
moe=constant.additive.inverse.model , ## the inverse model
parameters=tau0s , ## the hypotheses
blocks=B, ## Block membership
samples=nsims ) ## Number of samples from possible set

We include the samples=nsims argument here although the software actual returns the exact,
enumerated, distributions since the total size of the possible assignments set, Ω, is less than 100 (16
in this case).

Having generated the randomization distributions that characterize the different hypotheses, we
can calculate p-values and invert the tests to create intervals.

P-values and Intervals for Hypotheses from the Constant Effects Model

## A one-sided interval
one.sided.lower.ps ← na.omit(p.values(tau0.dist , lower.p.value))
high.ci.bound ←

max(one.sided.lower.ps[one.sided.lower.ps[,"p"]>.125 ,"tau"])
## A two-sided interval
two.sided.ps ← na.omit(p.values(tau0.dist ,general.two.sided.p.value))
two.sided.ci ← range(two.sided.ps[two.sided.ps[,"p"]>.125 ,"tau"])

To assess the hypotheses that were specific to named cities in § 2.5 we used the following model:

Testing Hypotheses about Named Interference

named.spillover ← function(r, z, b, tau , w) {
names(z) ← names(r)
r.adj ← r - z * tau
r.adj["Richland"] ← r.adj["Richland"] - w * tau * z["Yakima"]
r.adj["Midland"] ← r.adj["Midland"] - w * tau * z["Saginaw"]
r.adj["Saginaw"] ← r.adj["Saginaw"] - w * tau * z["Midland"]
return(r.adj)

}
theparams← list(tau = seq(0, 20, 1), w = seq(0,1,.1))
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news.spill.dist ← pRD(data=R,
treatment=Z,
test.stat=mean.difference ,
moe=named.spillover ,
parameters = theparams ,
blocks = B,
samples = nsims )

The two parameter inverse model from § 3 relied on an n × n network adjacency matrix, S, and
was coded as follows:

Testing Hypotheses from the Two Parameter Network Effects Model

link1← function(x){ 1 - ( 1 / (1+x) ) }
link2← function(x){ ( 1 / (1+x) ) }
make.inv.moe.2parm ← function(S,linkT ,linkC) {

function(ys , z, blocks , tau1 , tau2) {
ys - (z * ( tau1 + ( tau1*tau2 * linkT( as.vector( z %*% S ) ) )

)
+ (1-z) * ( tau1 * tau2 * linkC( as.vector( z %*% S ) ) ) )

}
}
inv.moe.2parm← make.inv.moe.2parm(S,linkT=link2 ,linkC=link1)
theparams.2parm← list(tau1 = seq (20 ,80 ,1), tau2 = seq(0,1,.01))
net.spill.true ← pRD(Y.2parm , ## Y generated by the 2 parm model

Z, ## vector of treatment assignemnts
mean.diff.noblocks , ## mann.whitney.u ,
inv.moe.2parm , ##
blocks = B, ## constant vector to communicate no

blocking.
parameters = theparams.2parm ,
samples=thesims )
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Appendix B A General Representation of Interference Effects
Here we propose a general representation of interference effects which enables us to reason

about datasets and experiments of any design or size.

Appendix B.1 The complete interference case
We begin by developing a way to write down the observational identity (i.e. the equation relating

observed outcomes to potential outcomes) without any restrictions on the potential outcomes. Later
we will consider how to prune or constrain this equation to reflect both the facts of design, outside
knowledge about outcomes, and hypotheses about effects and interference. In the same way that the
notation for potential outcomes allowed us to formalize our reasoning about counterfactual causation,
so too will a notation for sets of potential outcomes and interacting assignments help us reason about
and specify questions we want to ask of a given design. We make use of the isomorphism between
graphs, networks, and matrices to accomplish our task.

In the most general terms we can think of any set of units (an experimental pool for example), as
a “complete graph”:

Figure 12 shows such a graph. Here we have n = 3, and thus 23 = 8 potential outcomes per unit.
A complete graph has n(n − 1)/2 edges (or 2n(n − 1)/2 = n(n − 1) possible unidirectional paths for
interference). So, figure 12 has 6 paths of possible interference. Notice that each unit here depends
on all the other units and influences all the other units in turn whether or not the unit is assigned
treatment or control.

●

Figure 12: A Simulated Network and field experiment: treatment (circles) and control (squares). Without
further assumptions, treatment or control assigned to any unit may influence any other unit. The edges have
arrows to show that influence may be directional.

The vector of possible potential outcomes for unit 1, y1,., given the graph in figure 12 and no
further assumptions in is, lexicographic order:

y1,. = {y1,{111}, y1,{110}, y1,{101}, y1,{100}, y1,{011}, y1,{010}, y1,{001}, y1,{000}} (24)

If an arrow does not connect a unit i to another unit j, this we can write y j,Zi ,Z(−i) = y j,Z ′i ,Z(−i) for
any Zi 6= Z ′i . Since we are only considering the case of binary treatment here, this general statement
of equality can be simplified to say, y j,Zi=1,Z(−i) = y j,Zi=0,Z(−i). That is, for a given vector of treatment
assignments to j and every unit but i, unit j would show the same response whether unit i is treated
or not. Equalities of this form are implied by such pruning of the complete graph. That is, we set
potential outcomes equal to each other when we take away edges in the graph.

Before we begin to prune the complete graph, let us ask what the complete graph implies for the
relationship between what we observe for unit 1, Y1, and the potential outcomes shown in equation 24:
what is the observed outcome identity equation implied here?
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In scalar form we might write this identity as follows:

Y1 =Z3

(
Z2

(
Z1y1,111 + (1 − Z1)y1,011

)
+ (1 − Z2)

(
Z1y1,101 + (1 − Z1)y1,001

))
+

(1 − Z3)
(
Z2

(
Z1y1,110 + (1 − Z1)y1,010

)
+ (1 − Z2)

(
Z1y1,100 + (1 − Z1)y1,000

)) (25)

Notice that equation 25 specifies the circumstances under which what we observe for unit 1, Y1,
represents any of the potential outcomes possible from the complete graph and no further restrictions.
For example, it says that we would observe y1,Z={1,1,1} when Z1 = Z2 = Z3 = 1, or Z = {1, 1, 1}. We
can write this identity more cleanly using matrices. The matrix representation also allows us to
write this equation for any sample size (whereas the scalar form would get incredibly messy very
quickly). The matrix representation collects all of the potential outcomes into a 2 × (2n)/2 = 2n−1

matrix that we call ρ. For n = 3, we might write ρ for a unit i as follows:

ρi =

(
yi,111 yi,110 yi,101 yi,100
yi,011 yi,010 yi,001 yi,000

)
(26)

Equation 25 multiplies each of the entries in ρi by the corresponding collections of treatment
assigned to each unit. If we collect those ζ = {Zi, (1 − Zi)} into a 2 × 2n−1 matrix,Z, we can write
the observed outcome identity equation very succinctly for binary treatments as

Yi = 1(1×2) · (Zi × ρi) · 1(2n−1×1), (27)

whereZi, represents the Kronecker product, written⊗, of all of the vectors representing the treatment
possibilities for the units in the study,Zi =

⊗n
j ζ j = ζ1 ⊗ ζ3 ⊗ ζ2 = {Z1, (1 − Z1)} ⊗ {Z2, (1 − Z2)} ⊗

{Z3, (1 − Z3)}. The terms 1 are merely vectors of 1s, which collapse the result of (Zi × ρi) into a
single equation.

Here we write out equation 27 showing the full matrices (but doubly transposed to fit on the
page) for n = 3:

Yi =
(

1 1
)
·




Z1Z2Z3 (1 − Z1) Z2Z3
Z1Z2 (1 − Z3) (1 − Z1) Z2 (1 − Z3)
Z1 (1 − Z2) Z3 (1 − Z1) (1 − Z2) Z3

Z1 (1 − Z2) (1 − Z3) (1 − Z1) (1 − Z2) (1 − Z3)

 ×


yi,111 yi,011
yi,110 yi,010
yi,101 yi,001
yi,100 yi,000



T

·


1
1
1
1

 (28)

Since a priori all units in the study have the same relation between potential outcomes, treatment
assignments, and observed outcomes, we can create the n × 1 vector containing the equations for all
of the units in the study, Y, simply by multiplying Yi by 1(n×1), such that Y = Yi × 1(n×1).

Appendix B.1.1 Summary
We have shown that with only knowledge about (1) the size of the experimental pool and (2)

the number of unique possible treatments (here set to 2), we can have a compact notation for the
possible potential outcomes, treatment assignments, and the identity linking potential outcomes and
treatment assignments to observed outcomes. When n is large, these matrices become too large to
generate in software (let alone to write down their entries with a pencil), yet having this framework
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now allows us to represent restrictions on this case for more realistic experimental designs and
empirical structures; which in turn will allow us to specify and test hypotheses about treatment
effects and interference.

Appendix B.2 The Pruned Graph
No real study entertains hypotheses about 2n potential outcomes in any detailed manner. Even

with n = 40 we would have 1.1 · 1012 possible potential outcomes! Even if we want to hypothesize
directly about interference, we do not want to specify patterns of hypotheses for so many possibilities.
In a series of steps here we show how one may (and must) reduce the set of potential outcomes
considered. First, one may use information from the design of the study itself. Second, one may
have a good idea about subsets of units which ought to be seen as not interferring with units in
other subsets: For example, Sioux City, Lowell, and Oxford in the newspapers example were so
geographically distant from the other cities that we felt comfortable claiming no interference for
these cities. Third, the particular hypotheses that one desires to consider may involve further
simplifications: For example, in the social network example, we collapsed set of potential outcomes
even further (in fact, we could collapse them to only two potential outcomes and scalar functions
of network characteristics since the particular patterns did not matter). There is no requirement to
collapse the potential outcomes down to only two pieces, but fewer makes our exposition here more
clear.

Appendix B.2.1 Pruning by Design
Most of the potential outcomes listed in lists such as equation 24 will never occur in any real

design.16 For example consider again the n = 40 case, such a design would involve assigning exactly
20 to treatment. Thus, rather than 2n outcomes we have

(
40
20

)
= 1.378 · 1011 which has 0.13 as many

entries as the original set. Of course, in that case, we still have too many potential outcomes to
consider based only on how treatment was assigned.17

What does this mean for the core of the equation relating potential outcomes to observed outcomes
((Zi × ρi) )? It means that the matrices of assignments,Zi and potential outcomes ρi are smaller —
reflecting now the actually possible assignments rather than all possible n-tuples.

Appendix B.2.2 Pruning by Knowledge of Structure
We say “knowledge” here to distinguish it from “hypotheses about structure” although, of course,

we could include such structural statements as hypotheses. However, in many applications there are
subsets and groupings or even types of interference which are just not credible or would never be
interesting. Representing such incredible (i.e. not even worth hypothesizing about) relations prunes
the complete graph even more.

Figure 13 shows three plots representing certain structural presumptions about interference and
the related adjacency matrices for the case of n = 5.

Usually we have some idea about the groups of units within which interference is apt to occur,
16That vector can be thought of as all of the possible size 3 subsets of the 2-tuple {0, 1}.
17When an experiment uses blocking or pairing the set of possibilities may reduce even more

dramatically. For example, if we had organized 40 units into 20 pairs, then the set of possible
treatment assignments in which exactly one unit in each pair is treated would have about 1000000
elements. In the Newspapers study the total possible treatment assignments are 16 compared to 70
for the unpaired case.
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No Interference

●

●

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

1 2 3 4 5
A

Some Interference

●

●

1 0 1 0 0 0
2 1 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 1
5 0 0 0 1 0

1 2 3 4 5
B

Complete Interference

●

●

1 0 1 1 1 1
2 1 0 1 1 1
3 1 1 0 1 1
4 1 1 1 0 1
5 1 1 1 1 0

1 2 3 4 5
C

Figure 13: Graphs and corresponding adjacency matrices representing different interference/connectedness
structures.

or are willing to make some other decision which simplifies the “Everything is related to everything”
statement represented by the complete interference graph.

Notice, in fact, that the adjacency matrices (or graphs) tell us specific things about the relations
among potential outcomes. In particular, the 0s on the off-diagonal elements of those graphs tell us
that certain sets of potential outcomes can be made equal. To make this more clear, let us think about
what kinds of restrictions on the complete graph are implied by the graph in the central panel. We
have reproduced the adjacency matrix here with one change — we have made the diagonal contain
1s. We’ll explain why soon.

B =


1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 1 1

 (29)

The restrictions on the potential outcomes for unit 1 are those listed in the first column ofB. In that
column we have 3 zeros in positions {(3, 1), (4, 1), (5, 1)}. These zeros imply the following equality:
y1,Z{3,4,5},Z−({3,4,5}) = y1,Z′

{3,4,5},Z−({3,4,5}) for all Z{3,4,5} 6= Z′
{3,4,5}. That is, any set of potential outcomes for the

unit which are the same in all entries except for those reflecting assignment to any combination of
units 3,4, and 5 can be considered the same.

The complete graph for binary treatment with n = 5 with no further information would imply
25 = 32 potential outcomes for each unit. The design of the study would reduce this number to(
5
2

)
= 10. And, now stating restrictions on the possibilities for interference (such as noticing that one

of our units was just too isolated (perhaps by geography) to interfer or be interferred with, leaves
us with the following sets of potential outcomes: for the isolated unit 3 we have only 2 potential
outcomes

{
y3,{.,.,0,.,.}, y3,{.,.,1,.,.}

}
and for the other units (which interact with only one other unit) we

have 4 potential outcomes
{
yi,{0,0,.,.,.}, yi,{0,1,.,.,.}, yi,{i,0,.,.,.}, yi,{1,1,.,.,.}

}
for i ∈ {1, 2, 4, 5}.

Now, the matrix encoding possible interference, B, does tell us exactly how many potential
outcomes are available for hypotheses, but we cannot use it simply via some matrix multiplication to
simplify (Zi × ρi). After all B is n × n and (Zi × ρi) is 2 × |Ω| where |Ω| is the size of the Ω matrix
in terms of the numbers of z vectors it contains. In our simple n = 5 and nt = 2 case, |Ω| =

(
5
2

)
= 10.

One way to write down this operation uses the following algorithm:
Define a function Pos(M, s) which returns the positions of the scalar number s in the matrix M.

So,
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Pos(B, 0) ={{1, 3}, {1, 4}, {1, 5},
{2, 3}, {2, 4}, {2, 5},
{3, 1}, {3, 2}, {3, 4}, {3, 5},
{4, 1}, {4, 2}, {4, 3},
{5, 1}, {5, 2}, {5, 3}}

(30)

Now B is n × n and rows and columns hold the units in the same order (from 1 . . . n).
Now, consider all pairs of vectors of treatment assignments, Z,Z′ written in partitioned form

focusing on unit j as Z = {Z j ,Z(− j)} and Z′ = {Z ′j ,Z′(− j)}. Algorithmn 1 shows how we would infer
the relations between pruning the graph and the set of possible potential outcomes.

input :An adjacency matrix, B, with 1s on the diagonal indicating connections with 1 and
lack of connection with 0. Two vectors of treatment assignments, Z and Z′. In the
simple case, these are of length

(
n
k

)
.

output :Two vectors of treatment assignments, Z and Z′ either unchanged or set to be equal
by replacing a numeric element with a symbol.

if Z 6= Z′ such that Z j 6= Z ′j and Z(− j) = Z′(− j) and B j,i = 0 then
Set Z j = . such that Z = {Z j = .,Z(− j)} and Z′ = {Z ′j = .,Z′(− j)} and thus Z = Z′

else
do nothing

end

Algorithm 1: An algorithmic representation for how an adjacency matrix restricts potential
outcomes for a unit i.

So, if B3,1 = 0 then, for unit 1, we would set equal any potential outcomes which differ only in
the third element (indicating a difference of treatment to unit 3). So, at this point we have 2 potential
outcomes to consider for unit 3 and 4 for each of the other units. What hypotheses might we care to
assess?

Appendix B.2.3 Specifying and testing hypotheses involving interference between units
Given restrictions of design and structure (often geography but it could represent other kinds of

knowledge). We tend to have a small set of potential outcomes on which we can focus. How should
we write down hypotheses that we desire to assess?

Often, we are only interested in hypotheses in which units do not interfere and we write:
yi,Zi=1,Z(−i) = yi,Zi=1,Z′(−i)

and yi,Zi=0,Z(−i) = yi,Zi=0,Z′(−i)
for all Z 6= Z′. That is, the essence of enter-

taining ideas about “no interference” is to drastically prune the set of potential outcomes.
However, imagine we had some claims to assess involving consideration of interference — either

because we want to assess hypotheses about treatment effects in the presence of interference or
because we want to assess hypotheses about the interference process itself. In the n = 5 example
above, we have the opportunity to make such hypotheses about units 1,2,4 and 5 (assuming that 3
is so isolated that hypotheses about interference with it would be uninteresting). Imagine, again
for simplicity, the constant and additive treatment effect hypothesis generator for unit 3 such that
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y3,{.,.,1,.,.} = y3,{.,.,0,.,.} + τ or y3,Z3=1,Z(−3) = y3,Z3=0,Z(−3) + τ for any Z(−3). So, control response turns into
treatment response by the addition of a constant for unit 3 (according to this theory that we desire to
assess/this question we desire to ask).

Now, what do we mean by “control response” turning into “treatment response” for the other
putatively interferring units? Recall that the potential outcomes for those units were of the form:{
yi,{0,0,.,.,.}, yi,{0,1,.,.,.}, yi,{1,0,.,.,.}, yi,{1,1,.,.,.}

}
for i ∈ {1, 2, 4, 5}. We see two ways for unit i to have a control

response in those four potential outcomes. In one way, both interferring units have control {0, 0}
and in the other way, one unit has treatment and the other control, {0, 1} and {1, 0}. When another
potentially interferring unit receives treatment, then the focal unit, i, under control may receive some
spillover (or at least we may be interested in this question). So now, we use the {0, 0} outcome as the
baseline against which we compare either the direct treatment or spillover (or amplification) effects.

At this point we could write each of the three potential outcomes yi,{0,1,.,.,.}, yi,{1,0,.,.,.}, yi,{1,1,.,.,.}
as a function of yi,{0,0,.,.,.} and some parameters. In our examples, however, we further simplified
the hypotheses by saying that we were only interested in hypotheses either about direct effects or
spillover effects, not amplifying effects. This decision further simplified our set of hypotheses to
only two equations: (1) one for the situation in which unit i received control and the potentially
interfering unit j received treatment and (2) for the situation in which unit i is assigned the treatment
condition (in which we claim that yi,{1,0,.,.,.} = yi,{1,1,.,.,.}).

For example we might imagine a spillover effect when unit i is in the control condition and the
potentially interferring unit j is in the treatment condition: yi,Zi=0,Z j=1,. = yi,Zi=0,Z j=0,. + wτ where
w tells us the amount of the treatment effect that spills over. And we might also imagine a direct
constant effect when unit i is treated: yi,Zi=1,Z j=0,. = yi,Zi=1,Z j=1,. = yi,Zi=0,Z j=0,. + τ.

One could also imagine interesting hypotheses about all three potential outcomes: perhaps one
might write both yi,Zi=1,Z j=0,. = yi,Zi=0,Z j=0,. + τ and yi,Zi=1,Z j=1,. = yi,Zi=0,Z j=0,. + aτ to allow for an
amplification effect (i.e. the effect of treatment is made stronger when an interfering unit is also
treated).

Another approach to winnow the set of potential outcomes is to restrict attention to scalar
functions of them (Hong and Raudenbush 2006). So, for example in the section on social networks
we asked the question about whether (and to what extent), treatment effects might depend on the
number of treated connections. In essence this kind of hypothesis (and our current framework)
involves both the decision about how the function of connections ought to influence the direct
treatment effect, and also a decision that we do not want to entertain hypothesis about particular
combinations of potential outcomes. So, we could, in essence, think about our potential outcomes
as non-interferring except in the particular way that we desired to scrutinze. That is, we could write
yi,Zi=1,Z(−i) = yi,Zi=0,Z(−i)=0 + τ + τwZtS and yi,Zi=0,Z(−i) = yi,Zi=0,Z(−i)=0 + τwZtS.

Appendix B.2.4 Summary
This part of the paper has shown that (1) one may represent the complete set of potentially

interferring potential outcomes in a compact form and that (2) one may begin to restrict attention to
managable subsets of those outcomes using knowledge of design, information about structure, and
hypotheses about effects. In general, one may use the construct of a graph or network to represent
any form of interference and to allow formalization of hypotheses about treatment effects and
interference. Even though the set of potential outcomes can become immense very quickly (tending
to follow the law 2number of edges — actually this much more like a logistic function that asymptotes at
|Ω|), we need not make untestable no-interference assumptions merely because we are overwhelmed
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with the size of the possibilities. Rather, we can use what we know and what we care about (from
past theory and literature) to engage with manageable numbers of counter factuals in direct and
substantively meaningful manners.

Appendix B.3 Applying the General Representation to the Newspapers Study
We began this paper by talking informally about the placement of cities on a map and the types

of interference that the geography might imply. Such ideas led us to write a set of hypotheses:

h(yi,00) =
Zi(yi,00 + τ) + (1 − Zi)(yi,00) for i ∈ { Yakima, Oxford, Lowell, Battle Creek, Sioux City }
Zi(yi,00 + τ) + (1 − Zi)(yi,00 + wτ) for i ∈ { Richland, Midland, Saginaw }

.

(31)
Now we have a more general way to formalize the process of hypothesizing about interference.

Let us apply it to the newspaper advertisements study.

Saginaw

Sioux City

Battle Creek

Midland

Oxford

Lowell

Yakima

Richland

Figure 14: A directed network (or graph) representation of an interference hypothesis for the Panagopolous
Newspaper study. Squares represent cities assigned to treatment. Circles are cities assigned to control. Arrows
show direction of spillover: from the larger city of Yakima to the smaller city of Richland, and two way
interference between Midland and Saginaw.

Figure 14 shows the cities as nodes on a graph. We know that there are K = 16 possible ways to
assign treatment to the pairs of cities in this study, so, the complete graph would imply 16 potential
outcomes for each city. A graph without any connections (encoding the idea of no interference)
would imply 2 potential outcomes for each city.

We presumed, on the basis of knowledge about how local advertisements in newspapers relates
to the geography of the United States that the only possible connections would be between Yakima
and Richland and between Midland and Saginaw. And later we hypothesized that the interference
would be one-way from Yakima to Richland, but symmetric between Midland and Saginaw. This
graph encodes these statements about connections.

What potential outcomes are available for us to consider after drawing this graph? The adjacency
matrix of the graph tell us that we have two potential outcomes for each of the isolated cities (or cities
not plausibly interfering or interferred with). We also have two potential outcomes for Richland (but
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both depend on Yakima): yi,Zi=0,Z j=1 and yi,Zi=1,Z j=0 for i =Richland and j =Yakima. While Richland
and Yakima are in the same pair, and thus only one of them may be treated at a time, Midland
and Saginaw are in different pairs. So, Midland and Saginaw each have four potential outcomes to
consider: yi,{11},yi,{10},yi,{01},yi,{00}, where we write {11} as shorthand for {Zi = 1,Z j = 1}.

For the isolated cities, we claimed (for simplicity) that we were interested in whether the
hypothesis that h(yi,Zi=0,.) = yi,Zi=0,.+τ = yi,Zi=1,. could be rejected by our data, where we write yi,Zi=0,.
to indicate that we ignore the other potential outcomes in the network for these isolates.

Since Yakima is only a source not a destination of interference, its hypothesis is likewise
h(yi,Zi=0,.) = yi,Zi=0,. + τ. In this scenario, producing interference is the same as experiencing no
interference under the assumption that the people of Richland do not steal the newspapers from
Yakima and thereby diminish the treatment effect in Yakima [i.e. when spillover occurs with an
intervention that is not renewable or is excludable, then perhaps this idea that being the source of
spillover is the same as not experiencing interference is not a good one.]

Richland has two potential outcomes to consider but they both may involve interference: yi,10,yi,01.
We wondered whether the data would exclude the idea that some treatment spilled over from Yakima
to Richland, and between Midland and Saginaw, when the recipient of such spillover was in the
control condition such that: h(yi,Zi=0,Z j=1) = yi,Zi=0,Z j=0 + wτ where w is the proportion of the overall
treatment effect, τ, that spills over. We also decided to assess this hypothesis about spillover in the
situation in which there is no interference in the treatment condition — the idea being that direct
experience of treatment drowns out any treatment leaking over from another city and also that there
is no amplification of treatment.

These considerations meant that we did not need to specify hypotheses about all four potential
outcomes available for Midland and Saginaw. Rather, by hypothesis, we wrote yi,11 = yi,10 = yi,1.
and h(yi,00) = yi,00 + τ = yi,1..

We listed those hypotheses in a condensed form in equation 31. And we can now see that the
equations here:

yi,00 =


Yi − τZi when i ∈ { Yakima, Oxford, Lowell, Battle Creek, Sioux City }
Yi − τZi − wτZ j when i=Richland, j=Yakima
Yi − τZi − wτZ j when i=Midland, j=Saginaw
Yi − τZi − wτZ j when i=Saginaw, j=Midland

(32)

arise from solving each observed outcome identity equation 27 (one for each type of network
effects) for the potential response to the uniformity trial. And the randomization distribution against
which we compare functions of observed data arises from the design of the experiment itself.

Appendix B.3.1 Workflow and Summary
In this section, we have provided a formal framework to support reasoning about treatment

effects and interference effects in comparative studies of arbitrary design and size. If one can draw
a graph or a network diagram (or specify an adjacency matrix) then one can know which list of
potential outcomes are available for use in assessing substantively motivated hypotheses.
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